Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T07:48:03.147Z Has data issue: false hasContentIssue false

Deep Level Characterization and Passivation in Heteroepitaxial Inp

Published online by Cambridge University Press:  22 February 2011

B. Chatterjee
Affiliation:
Department of Electrical Engineering, Ohio State University, Columbus, OH 43202, USA
S. A. Ringel
Affiliation:
Department of Electrical Engineering, Ohio State University, Columbus, OH 43202, USA
R. Sieg
Affiliation:
Department of Electrical Engineering, Ohio State University, Columbus, OH 43202, USA
I. Weinberg
Affiliation:
NASA Lewis Research Center, Cleveland, Ohio 44135, USA
R. Hoffman
Affiliation:
NASA Lewis Research Center, Cleveland, Ohio 44135, USA
Get access

Abstract

Deep levels in MOCVD grown p-InP on GaAs substrates have been investigated by Deep Level Transient Spectroscopy (DLTS). The effect of hydrogenation on the electrical activity of these levels has been studied through a combination of DLTS and Photoluminescence (PL) measurements. DLTS measurements indicate a drop of trap density from σ 5 × 1014 cm−3 to σ 1 × 1012 cm−3 after hydrogenation. Annealing at 400°C reactivated only the dopants, while temperatures above 600°C were necessary for deep-level reactivation. This combined with a logarithmic dependence on fill pulse time, indicate that at least one broad DLTS peak is associated with dislocations. The PL the DLTS results show that the dislocation related traps are passivated by hydrogen, preferentially over the dopants and that a wide annealing window exists for dopant reactivation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Jain, R. K. and Flood, D. J., IEEE Trans. Electron Devices 40 (11), 1928 (1993).CrossRefGoogle Scholar
2) Chatterjee, B., Sieg, R., Ringel, S., R. Hoffman and Weinberg, I., presented at the 1993 lectrochem. Soc. Conf. New Orleans.Google Scholar
3) Pearton, S. J., Short, K. T., Macrander, A. T., Abernathy, C. R., Mazzi, V. P., Haegel, N. M., Al-Jassim, M. M., Vernon, S. M. and Haven, V. E., J. Appl. Phy. 65 (3), 1083 (1989).CrossRefGoogle Scholar
4) Wosinski, T., J. Appl. Phys. 65 (4), 1566 (1989).CrossRefGoogle Scholar
5) Omling, P., Weber, E. R., Montelius, L., Alexander, H. and Michel, J., Phys. Rev. B 32 (10), 6571 (1985).CrossRefGoogle Scholar
6) Hseigh, K. C., Feng, M. S., Stillman, G. E. and Holonyak, N., Appl. Phys. Lett. 54 (4), 341 (1989).Google Scholar
7) Antell, G. R., Briggs, A. T. R., Butler, B. R., Kitching, S. A., Stagg, J. P., Chew, A. and Sykes, D. E., Appl. Phys. Lett. 53 (9), 758 (1986).Google Scholar
8) Matragrano, M. J., Watson, G. P., Ast, D. G., Anderson, T. J. and Pathangey, B., Appl. Phys. Lett. 62 (12), 1417(1993).Google Scholar
9) Williams, E. W., Elder, W., Astles, M. G., Web, M., Mullin, J. B., Straughan, B. and Tufton, P. J., J. Electrochem. Soc. 120, 1741 (1973).CrossRefGoogle Scholar
10) Gal, M., Tavendale, A., Johnson, M. J. and Usher, B. F., J. Appl. Phys. 66 (2), 968 (1989).CrossRefGoogle Scholar
11) Chatterjee, B. and Ringel, S. A., in preparation.Google Scholar