Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T21:30:36.048Z Has data issue: false hasContentIssue false

Data Transmission Performance of Few-Layer Graphene Ribbons

Published online by Cambridge University Press:  30 August 2011

Ali Bilge Guvenc
Affiliation:
Department of Electrical Engineering, University of California-Riverside, Riverside, CA 92521, U.S.A.
Jian Lin
Affiliation:
Department of Mechanical Engineering, University of California-Riverside, Riverside, CA 92521, U.S.A.
Miroslav Penchev
Affiliation:
Department of Electrical Engineering, University of California-Riverside, Riverside, CA 92521, U.S.A.
Cengiz Ozkan
Affiliation:
Department of Mechanical Engineering, University of California-Riverside, Riverside, CA 92521, U.S.A. Material Science and Engineering Program, University of California-Riverside, Riverside, CA 92521, U.S.A.
Mihrimah Ozkan
Affiliation:
Department of Electrical Engineering, University of California-Riverside, Riverside, CA 92521, U.S.A.
Get access

Abstract

We investigated the electrical characteristics and digital data transmission performance few-layer graphene ribbons grown by chemical vapor deposition. Graphene ribbons having a mobility of 2,180 cm2V-1s-1 can sustain data rates up to 50 megabits per second at 1.5 μm length, thus the bandwidth is inversely proportional to resistance caused by defects in the graphene layers. Improving the graphene mobility to highest measured values (∼200,000 cm2V-1s-1) and using structures with multiple coplanar transmission lines in parallel could carry the bandwidth beyond the gigabits per second level.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bondyopadhyay, P. K., Proceedings of the Ieee 86(1), 7881 (1998).Google Scholar
2. Yarimbiyik, A. E., Schafft, H. A., Allen, R. A., Zaghloul, M. E. and Blackburn, D. L., Microelectronics Reliability 46(7), 10501057 (2006).Google Scholar
3. Shao, Q., Liu, G., Teweldebrhan, D. and Balandin, A. A., Applied Physics Letters 92(20), 202108 (2008).Google Scholar
4. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A., Science 306 (5296), 666-669 (2004).Google Scholar
5. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V. and Firsov, A. A., Nature 438 (7065), 197-200 (2005).Google Scholar
6. Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P. and Stormer, H. L., Solid State Communications 146(9-10), 351355 (2008).Google Scholar
7. Miller, D. A. B. and Ozaktas, H. M., Journal of Parallel and Distributed Computing 41(1), 4252 (1997).Google Scholar
8. Sd, Personic, Bell System Technical Journal 52(6), 843874 (1973).Google Scholar
9. Shake, I., Takara, F. and Kawanishi, S., IEEE Photonics Technology Letters 15(4), 620622 (2003).Google Scholar
10. Reina, A., Jia, X. T., Ho, J., Nezich, D., Son, H. B., Bulovic, V., Dresselhaus, M. S. and Kong, J., Nano Letters 9(8), 30873087 (2009).Google Scholar
11. Reina, A., Son, H. B., Jiao, L. Y., Fan, B., Dresselhaus, M. S., Liu, Z. F. and Kong, J., Journal of Physical Chemistry C 112(46), 1774117744 (2008).Google Scholar
12. Calizo, I., Balandin, A. A., Bao, W., Miao, F. and Lau, C. N., Nano Letters 7(9), 26452649 (2007).Google Scholar
13. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R. and Geim, A. K., Science 320 (5881), 13081308 (2008).Google Scholar
14. Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S. and Geim, A. K., Physical Review Letters 97(18), 187401 (2006).Google Scholar
15. Suarez-Martinez, I., Felten, A., Pireaux, J. J., Bittencourt, C. and Ewels, C. P., Journal of Nanoscience and Nanotechnology 9(10), 61716175(6175) (2009).Google Scholar
16. Streetman, B. G., Solid State Electronic Devices, 4 ed. (Prentice Hall, New York, 1995).Google Scholar
17. Shake, I., Takara, H. and Kawanishi, S., Journal of Lightwave Technology 22(5), 12961302 (2004).Google Scholar
18. Ong, C.-K., Hong, D., Cheng, K.-T. T. and Wang, L.-C. presented at the Proceedings of the Design, Automation and Test in Europe Conference and Exhibition Paris, (2004).Google Scholar
19. Downie, J. D., Journal of Lightwave Technology 23(6), 20312038 (2005).Google Scholar
20. Bergano, N. S., Kerfoot, F. W. and Davidson, C. R., IEEE Photonics Technology Letters 5(3), 304306 (1993).Google Scholar
21. Jaernin, S., Chung-Seok, S., Chellappa, A., Brooke, M., Chattejce, A. and Jokerst, N. M, presented at the Electronic Components and Technology Conference, 2003. Proceedings. 53rd, (2003).Google Scholar