Hostname: page-component-68945f75b7-4zrgc Total loading time: 0 Render date: 2024-08-06T05:07:38.927Z Has data issue: false hasContentIssue false

Dangling Bonds and Sub-Gap Optical Absorption in Silicon

Published online by Cambridge University Press:  28 February 2011

C. H. Seager
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87185
P. M. Lenahan
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87185
K. L. Brower
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87185
R. E. Mikawa
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87185
Get access

Abstract

The silicon “dangling bond” defect plays a large part in controlling the electronic properties of a-Si, polycrystalline silicon, and the Si/Si0 2 interface. Jackson et al. have suggested that transitions of electrons occupying this defect produce the Urbach-like sub-gap absorption tail seen in two of these materials. We have performed optical and electron spin resonance measurements on polycrystalline silicon, plastically deformed silicon, and Si/Si02 interfaces to further examine this contention. In addition to seeing no measurable absorptance due to dangling bond interface states in the latter system, we conclude from the poor correlation of ESR signals with optical data that the Urbach tail in polycrystalline and deformed silicon is not due to transitions of dangling bond electrons.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Urbach, F., Phys. Rev. 92, 1324 (1953).Google Scholar
2.See for instance the discussion by: Hopfield, J. J., Comments Solid State Physics 1, 16 (1968).Google Scholar
3. A good review-of this phenomena for amorphous materials can be found in Electronic Processes in Non-Crystalline Materials, Mott, N. F. and Davis, E. A., editors (Oxford University Press, 1979), pp. 272284.Google Scholar
4. Dow, J. D. and Redfield, D., Phys. Rev. B5, 594 (1972).Google Scholar
5. Stern, F., Phys. Rev. B3, 2636 (1971).CrossRefGoogle Scholar
6. Soukoulis, C. K., Cohen, M. H. and Economou, E. N., Phys. Rev. Lett. 53, 616 (1984).Google Scholar
7. Jackson, W. B. and Amer, N. M., Phys. Rev. B25, 5559 (1982).CrossRefGoogle Scholar
8. Jackson, W. B., Solid State Comm. 44, 477 (1982).Google Scholar
9. Jackson, W. B., Johnson, N. M. and Biegelsen, K., Appl. Phys. Lett. 43, 195 (1983).Google Scholar
10. Jackson, T.B., Amer, N. M., Boccara, A. C. and Fournier, D., Appl. Opt. 20, 1333 (1981).CrossRefGoogle Scholar
11. Seager, C. H. and Lenahan, P. M., submitted to the Journal of Applied Physics.Google Scholar
12. Lepine, D., Grazhulis, V. A. and Kaplan, D., Proc. of the International Conference on the Physics of Semiconductors, Rome, 1976, p. 1081.Google Scholar
13. Brodsky, M. H. and Title, R. S., Phys. Rev. lett. 23, 581 (1969).Google Scholar
14. Johnson, N. M., Biegelsen, D. K. and Moyer, M. D., Appl. Phys. Lett. 40, 882 (1983).Google Scholar
15. Caplan, P. J., Poindexter, E. H., Deal, B. E. and Razouk, R. R., J. Appl. Phys. 50, 5847 (1979).Google Scholar
16. Seager, C. H., Sharp, D. J., Panitz, J.K.G. and D'Aiello, R. V., J. Vac. Sci. Technol. 20, 430 (1982).Google Scholar
17. Brower, K. L., Appl. Phys. Lett. 43, 1111 (1983).CrossRefGoogle Scholar
18. Mikawa, R. E. and Lenahan, P. M., IEEE Trans. Nucl. Sci. NS–31 (1984).Google Scholar
19. Mishima, Y., Hirose, M. and Osaka, Y., J. Appl. Phys. 51,713 (1980).Google Scholar