Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-08T14:06:10.162Z Has data issue: false hasContentIssue false

Ctivation Energies Of Interstitial Oxygen Diffusion In Silicon Containing Hydrogen

Published online by Cambridge University Press:  15 February 2011

W. Wijaranakula*
Affiliation:
Shin-Etsu, SEH America, Incorporated 4111 Northeast 112th Avenue, Vancouver, Washington 98682–6776, USA
Get access

Abstract

The activation energies of interstitial oxygen diffusion in silicon containing hydrogen were derived from the results obtained from thermal donor generation experiments using numerical fitting based upon the classical nucleation rate theory and the time-dependent reduction of interstitial oxygen concentration resulting from oxygen aggregation. By using a new thermal equilibrium concentration of hydrogen at a pressure of 1 atm of 2×1021 exp(- 1.75 eV/kT), and the expression for the dependence of hydrogen thermal equilibrium concentration on the partial pressure P given as P0.65 times the hydrogen thermal equilibrium concentration at a pressure of 1 atm, the correlation between the activation energies of interstitial oxygen diffusion and hydrogen saturation is observed to be linearlogarithmic. In the hydrogen saturation range between 103 and 106, the activation energies of interstitial oxygen diffusion are estimated to be between 0.03 and 0.21 eV lower than the normal value of 2.53 eV. This implies that enhanced oxygen diffusion may occur primarily under hydrogen saturation conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kim, S.S. and Wijaranakula, W., in Defect and Impurity Engineered Semiconductors and Devices, edited by Ashok, S., Chevallier, J., Akasaki, I., Johnson, N.M., and Sopori, B.L., (Mate. Res. Soc. Proc. 378, Pittsburgh, PA, 1995) p.725730.Google Scholar
2. Mikkelsen, J.C. Jr, in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, edited by Mikkelsen, J.C. Jr, Pearton, S.J., Corbett, J.W., and Pennycook, S.J., (Mate. Res. Soc. Proc. 59, Pittsburgh, PA, 1986) p.1930.Google Scholar
3. McQuaid, S.A., Newman, R.C., Tucker, J.H., Lightowlers, E.C., Kubiak, R.A.A. and Goulding, M., Appl.Phys.Lett., 58, 2933(1991).Google Scholar
4. Zhong, L. and Shimura, F., J.Appl.Phys., 73, 707(1993).Google Scholar
5. Newman, R.C., Tucker, J.H., Brown, A.R., and McQuaid, S.A., J.Appl.Phys., 70, 3061(1991).Google Scholar
6. Koizuka, M., Hara, A. and Yamada-Kaneta, H., in Extended Abstracts, (The Electrochem.Soc., Abstr.No. 515, 95–2, Pennington, NJ, 1995) p.821822.Google Scholar
7. Hara, A., Koizuka, M., Aoki, M., Fukuda, T., Yamada-Kaneta, H., and Mori, H., Jpn.J.Appl.Phys., 33, 5577(1994).Google Scholar
8. Benton, J.L., Kimerling, L.C. and Stavola, M., Physica 116B, 271(1983).Google Scholar
9. Becker, R., Proc.Phys.Soc., 52, 71(1940).Google Scholar
10. Oehrlein, G.S., Linstrom, J.L., and Cohen, S.A., in Thirteenth International Conference on Defects in Semiconductors, edited by Kimerling, L.C. and Parsey, J.M. Jr., (The Metal. Soc.of AIME, Warrendale, PA, 1984) p. 7001–708.Google Scholar
11. Wijaranakula, W., Appl.Phys.Lett., 59, 1608(1991).Google Scholar
12. Wijaranakula, W., Appl.Phys.Lett., 59, 1185(1991).Google Scholar
13. Kamiura, Y., Hashimoto, F., and Yoneta, M., J.Appl.Phys., 65, 600(1989).Google Scholar
14. Wijaranakula, W., J. Appl.Phys., 67, 7624(1990).Google Scholar
15. Ourmazd, A., Schröter, W., and Bourret, A., J.Appl.Phys., 58, 1670(1984).Google Scholar
16. Wieringen, A. Van and Warmoltz, N., Physica, XXII, 849(1956).Google Scholar