Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-24T21:29:18.608Z Has data issue: false hasContentIssue false

Crystallographic Structure of Cobalt Films on CU (100)

Published online by Cambridge University Press:  03 September 2012

O. Heckmann
Affiliation:
LURE, Université de Paris Sud F-91405 ORSAY, France
H. Magnan
Affiliation:
and SRSIM, CEA Saclay F-91191 GIF sur YVETTE, France
P. Le Fevre
Affiliation:
LURE, Université de Paris Sud F-91405 ORSAY, France
D. Chandesris
Affiliation:
LURE, Université de Paris Sud F-91405 ORSAY, France
Get access

Abstract

The stable structure of cobalt is hexagonal closed packed (hep), but cobalt can be stabilized in the face centered cubic structure (fee) by epitaxy on Cu (100). These films are ferromagnetic with [110] in plane easy axis. The Magnetic anisotropies of these films strongly depend on their structure, and in particular to the possible deviation from the isotropie fee structure. We have studied these films by surface EXAF.S. By recording the spectra both in normal incidence and in grazing incidence we have shown that the Co/Cu (100) films have a face centered tetragonal structure: the mean nearest neighbour distance parallel to the surface is 2.55 Å (same value as in bulk copper) and the interlayer bonds length is 2.50 Å (same value as in bulk cobalt). We conclude that the films are in perfect epitaxy on copper (100) with a contraction of the lattice parameter perpendicular to the surface of 4%. A constant tetragonalization is observed for films of 2 to 15 Monolayers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schneider, C. M., Schmid, A.K., Oepen, H.P. and Kirschner, J. in Structure and magnetism in Low Dimensional systems, eds Farrow, R.F.C., Donath, M., Dieny, B., Fert, A., Hermsmeier, B. (Plenum Press, New York 1993)Google Scholar
2. Stampanoni, M., Appl. Phys. A 49, 449 (1989).Google Scholar
3. Schneider, C. M., Bressler, P., Schuster, P., Kirschner, J., de Miguel, J. J., and Miranda, R., Phys. Rev. Lett. 64, 1059 (1990).Google Scholar
4. Oepen, H. P., Benning, M., Ibach, H., Schneider, C. M., and Kirschner, J., Journal of Magn. Magn. Mat. 86, L 137 (1990).Google Scholar
Heinrich, B., Cochran, J.F., Kowalewski, M., Kirschner, J., Celiński, Z., Arrott, A.S., and Myrtle, K., Phys. Rev. B 44, 9348 (1991) andGoogle Scholar
Kowalewski, M., Schneider, C.M. and Heinrich, B., Phys. Rev. B 47, (1993)Google Scholar
5. Clarke, A., Jennings, G., Willis, R. F., Rous, P. J., and Pendry, J. B., Surf. Sci. 187, 327 (1987).Google Scholar
6. Stöhr, J., Denley, D., and Perfetti, P., Phys. Rev. B 18, 4132 (1978);Google Scholar
Citrin, P. H., Eisenberger, P., and Hewitt, R. C., Phys. Rev. Lett. 41, 309 (1978).Google Scholar
7. Sayers, D. E., Stern, E. A. and Lytle, F. W., Phys. Rev. Lett. 27, 1204 (1971).Google Scholar
8. Bunker, G., Nucl. Instr. Meth. 207, 437 (1983);Google Scholar
Magnan, H., Chandesris, D., Rossi, G., Jezequel, G., Hricovini, K., and Lecante, J., Phys. Rev. B 40, 9989 (1989).Google Scholar
9. Greegor, R. B. and Lytle, F. W., Phys. Rev. B 20, 4902 (1979).Google Scholar
10. Roubin, P., Chandesris, D., Rossi, G., Lecante, J., Desjonquères, M. G., and Tréglia, G., Phys. Rev. Lett. 56, 1272 (1986);Google Scholar
Roubin, P., Chandesris, D., Rossi, G., and Lecante, J., J. Phys. F 18, 1165 (1988).Google Scholar
11. Lee, P. A. and Pendry, J. B., Phys. Rev. B 11, 2795 (1975).Google Scholar
12. Magnan, H., Chandesris, D., Villette, B., Heckmann, O. and Lecante, J., Phys. Rev. Lett. 67, 859 (1991).Google Scholar
13. using the standard definition of the elastic constants for cubic crystals. From the American Institute of Physics Handbook, the ratio C12/C11 is respectively 0.59 and 0.64 for cubic Fe and Ni and is 0.54 for hexagonal cobalt.Google Scholar