Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-16T23:46:16.463Z Has data issue: false hasContentIssue false

Crystallization of Germanium-Carbon Alloys - Structure and Electronic Transport

Published online by Cambridge University Press:  15 February 2011

T.-M. John
Affiliation:
Institut für Experimentelle Physik, Otto-von-Guericke Universität, PF 4120, 39016 Magdeburg, Germany, thomas-maik.john@physik.uni-magdeburg.de
J. Bläsing
Affiliation:
Institut für Experimentelle Physik, Otto-von-Guericke Universität, PF 4120, 39016 Magdeburg, Germany, thomas-maik.john@physik.uni-magdeburg.de
P. Veit
Affiliation:
Institut für Experimentelle Physik, Otto-von-Guericke Universität, PF 4120, 39016 Magdeburg, Germany, thomas-maik.john@physik.uni-magdeburg.de
T. Drüsedau
Affiliation:
Institut für Experimentelle Physik, Otto-von-Guericke Universität, PF 4120, 39016 Magdeburg, Germany, thomas-maik.john@physik.uni-magdeburg.de
Get access

Abstract

Amorphous Ge1-xCx alloys were deposited by rf-magnetron sputtering from a germanium target in methane-argon atmosphere. Structural investigations were performed by means of wide and small angle X-ray scattering, X-ray reflectometry and cross-sectional transmission electron microscopy. The electronic transport properties were characterized using Hall-measurements and temperature depended conductivity. The results of X-ray techniques together with the electron microscopy clearly proof the existence of a segregation of the components and cluster formation already during deposition. The temperature dependence of the electronic conductivity in the as-prepared films follows the Mott' T−1/4 law, indicating transport by a hopping process. After annealing at 870 K, samples with x≤0.4 show crystallization of the Ge-clusters with a crystallite size being a function of x. After Ge-crystallization, the conductivity increases by 4 to 5 orders of magnitude. Above room temperature, electronic transport is determined by a thermally activated process. For lower temperatures, the σ(T) curves show a behaviour which is determined by the crystallite size and the free carrier concentration, both depending on the carbon content.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Collins, R.W., Tsai, C. C., Hirose, M., Koch, F. and Brus, L. (eds.), Macrocrystalline and Nanocrystalline Semiconductors (Mat. Res. Soc. Symp. Proc. 358), Pittsburgh, PA, 1995.Google Scholar
2. Zacharias, M., Bläsing, J., Christen, J. and Wendt, U., J. Non-Cryst. Solids 96 198 (1996).Google Scholar
3. Freistedt, H., Stolze, F., Zacharias, M., Bläsing, J. and Drüsedau, T., phys. stat. sol. (b) 193 375 (1996).Google Scholar
4. Honma, I., Koiyama, H. and Tanaka, K., Phil. Mag. B 60 3 (1989).Google Scholar
5. Williams, G.V.M., Bittar, A. and Trodahl, H. J., J. Appl. Phys. 67 1874 (1990).Google Scholar
6. Kolodzey, J., O'Neil, P. A., Zhang, S., Orner, B. A., Roe, K., Unruh, K. M., Swann, C. P., Waite, M. M. and Shah, S. I., Appl. Phys. Lett. 67 1865 (1995).Google Scholar
7. Morimoto, A., Kataoka, T., Kumeda, M. and Shimizu, T., Phil. Mag. B 50 517 (1984).Google Scholar
8. Drüsedau, T., Annen, A., Schröder, B. and Freistedt, H., Phil. Mag. B 69 (1994) 1.Google Scholar
9. Drüsedau, Tilo P., John, T.-M., Anton, R. and Blssing, J., Phys. Stat. Sol. (b) 196 K1 (1996)Google Scholar
10. John, T.-M., Veit, P., Anton, R. and Drüsedau, T., Thin Solid Films in press.Google Scholar
11. Yuan, H. and Williams, R.S., Chem. Mater. (1993).Google Scholar
12. Paul, W., Connel, G.A.N. and Temkin, R.J., Advances in Physics Vol. XXII Nos. 1–6 531 (1973).Google Scholar
13. Fuhs, W., Landolt-Börnstein, Band 17 Halbleiter, Teilband i, 13.Google Scholar
14. Veprek, S., Iqbal, Z., Kühne, R.O., Capezzuto, P., Sarott, F.-A. and Gimzewski, J.K., J. Phys. C: Solid State Phys. 16 6241 (1983).Google Scholar
15. LeComber, P.G., Willeke, G. and Spear, W.E., J. of Non-Cryst. Sol. 795 (1983).Google Scholar
16. Slaughter, J.M., Schulze, Dean W., Hills, C. R., Mirone, A., Stalio, R., Watts, R. N., Tario, C., Lucatorto, T. B., Krumrey, M., Mueller, P. and Falco, Charles M., J. Appl. Phys. 76 2144 (1994).Google Scholar
17. Shinar, J., Wu, H.S., Shinar, R. and Shanks, H.R., J. Appl. Phys. 62 808 (1987).Google Scholar
18. Bläsing, J. and Schramm, U., phys. Stat. Sol. (a) 141 261 (1994).Google Scholar
19. Mott, N.F., Phil. Mag., 19 835 (1969).Google Scholar
20. Dasgupta, D., Demichelis, F. and Tagliafero, A., Phil. Mag. B 63 1255 (1991).Google Scholar
21. Look, D.C., Electrical Characterization of GaAs Materials and Devices, printed by John Wiley, 227 (1995).Google Scholar