Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-12T08:25:42.031Z Has data issue: false hasContentIssue false

Crystalline, Glassy and Molten Electrolytes: Conductivity Spectra and Model Consdderations

Published online by Cambridge University Press:  10 February 2011

K. Funke*
Affiliation:
Institut für Physikalische Chemie, Westfälische Wilhelms-Universität, Schlossplatz 4/7, D-48149 Münster, Germany. E-mail address: k.fimke@uni-muenster.de
Get access

Abstract

Conductivity spectra of crystalline, glassy and molten electrolytes are presented and discussed. The spectra cover fourteen decades on the frequency scale as well as wide temperature ranges. In some crystalline ion conductors, the translational and vibrational contributions to the conductivity are well separated on the frequency scale. This is not observed in glasses and melts. In these cases, the vibrational components can, however, often be removed from the total spectra, yielding the translational component. We find that in crystalline, glassy, and molten electrolytes the conductivity caused by translational motion of the ions exhibits plateaux at both low and high frequencies, with a dispersive regime in between. The dispersive sections of the conductivity isotherms always cover a triangular area in a log-log plot of conductivity times temperature versus frequency. For an interpretation, the jump relaxation model turns out to be appropriate for crystalline electrolytes. The existence of different kinds of site is typical of glasses. For fragile molten electrolytes, a simple semimicroscopic model is presented which explains the experimental findings including the Vogel-Fulcher-Tammann temperature dependence of the dc conductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Funke, K., Kloidt, T., Wilmer, D., and Carlile, C.J., Solid State Ionics 53–56, 947 (1992).Google Scholar
2. Jonscher, A.K., Nature 267, 673 (1977).Google Scholar
3. Strom, U. and Ngai, K.L., Solid State Ionics 5, 167 (1981).Google Scholar
4. Cramer, C., Graeber, R., Ingram, M.D., Saatkamp, T., Wilmer, D., and Funke, K., Mat. Res. Soc. Symp. Proc. 369, 233 (1995)Google Scholar
5. Funke, K., Wilmer, D., Lauxtermann, T., Holzgreve, R., and Bennington, S.M., Solid State Ionics 86–88, 141 (1996).Google Scholar
6. Funke, K., Prog. Solid St. Chem. 22, 111 (1993).Google Scholar
7. Ngai, K.L., Comments Solid State Phys. 9, 127 (1979) and 9, 141 (1980).Google Scholar
8. Funke, K., J. Non-Cryst. Solids 172–174, 1215 (1994).Google Scholar
9. Cramer, C., Funke, K., Saatkamp, T., Wilmer, D., and Ingram, M.D., Z. Naturforsch. 50a, 613 (1995).Google Scholar
10. Funke, K., Cramer, C., Roling, B., Saatkamp, T., Wilmer, D., and Ingram, M.D., Solid State Ionics 85, 293 (1996)Google Scholar
11. Saatkamp, T., Thesis, Münster 1997 Google Scholar
12. Ngai, K.L., Cramer, , Saatkamp, T., and Funke, K. in Non equilibrium phenomena in supercooled fluids, glasses and amorphous materials, edited by Giordano, M., Leporini, D., and Tosi, M.P. (World Scientific, Singapore, 1996), p. 3.Google Scholar
13. Cramer, C., Funke, K., Buscher, M., Happe, A., Saatkamp, T., and Wilmer, D., Phil. Mag. B 71, 713 (1995).Google Scholar
14. Angell, C.A., J. Phys. Chm. 68, 1917 (1964).Google Scholar
15. Kuhs, W.F. and Heger, G., Experimental Report, Institut Laue-Langevin, Grenoble, 1981.Google Scholar