Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-26T02:13:50.870Z Has data issue: false hasContentIssue false

Crystal Chemical Constraints on the Formation of Actinide Pyrochlores

Published online by Cambridge University Press:  26 February 2011

Bryan C. Chakoumakos
Affiliation:
University of New Mexico, Geology Department, Albuquerque, NM 87131
Rodney C. Ewing
Affiliation:
University of New Mexico, Geology Department, Albuquerque, NM 87131
Get access

Abstract

The pyrochlore structure type, A1−2 B2 O6Y0−1 Fd3m Z=8, is a common constituent of polyphase, crystalline waste forms. Naturally occurring minerals with the same structure often occur in the radiation damaged, electron-diffraction amorphous, “metamict” state; and therefore, a principal concern with phases of this structure type is the effect of alpha-recoil damage associated with the presence of actinides. In this paper we outline crystal chemical constraints on the formation of novel actinide pyrochlores.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Subramanian, M.A., Aravamudan, G., and Rao, G.V. Subba, Prog. Solid State Chem. 15, 55143 (1983).CrossRefGoogle Scholar
[2] Hogarth, D.D., Am. Mineral. 62, 403410 (1977).Google Scholar
[3] Fleischer, M., Glossary of Mineral Species 1983 (Mineralogical Record, Tucson, 1983).Google Scholar
[4] Haggerty, S.E., Ann. Rev. Earth Planet. Sci. 11, 133163 (1983).CrossRefGoogle Scholar
[5] Dosch, R.G., Headley, T.J., and Hlava, P., J. Am. Ceramic Soc. 67, 354361 (1984).CrossRefGoogle Scholar
[6] Morgan, P.E.D., Shaw, T.M., and Pugar, E.A. in: Advances in Ceramics, Vol.8, Wicks, G.G. and Ross, W.A., eds. (American Ceramic Society, Columbus, Ohio 1984) p. 209221.Google Scholar
[7] Pauling, L., The Nature of the Chemical Bond, 3rd Ed. (Cornell University Press, Ithaca, NY 1960).Google Scholar
[8] Pyatenko, Yu. A., Zhur. Struk. Khimii 2, 591596 (1961) (trans. J Struc. Chem. 2, 545–548, 1961).Google Scholar
[9] Pyatenko, Yu. A., Kristallogr. 4, 204208 (1959) (trans. Sov. Phys. Crystallogr. 4, 184–186, 1960).Google Scholar
[10] Barker, W.W., Graham, J., Knop, O., and Brisse, F. in: The Chemistry of Extended Defects in Non-metallic Solids, Eyring, L. and O'Keeffe, M., eds. (North-Holland, Amsterdam 1970) p. 198206.Google Scholar
[11] Grins, J., Chem. Commun. (Stockholm) 8, 170 (1980).Google Scholar
[12] Ewing, R.C. and Chakoumakos, B.C. in: Short Course in Granitic Peamatites in Science and Industry, Cerny, P., ed. (Mineral Assnc. Canada, Toronto 1982) p. 239265.Google Scholar
[13] Chakoumakos, B.C., J. Solid State Chem. 53, 120129 (1984).CrossRefGoogle Scholar
[14] Shannon, R.D., Acta Crystallogr. Sect. A32, 751767 (1976).CrossRefGoogle Scholar
[15] Kemmeler-Sack, S. and Rudorff, W., Zeits. anorq. alleqmeine Chem. 344, 2340 (1966).Google Scholar
[16] Kemmeler-Sack, S., Zeits. anoro. allcemeine Chem. 363, 282294 (1968).Google Scholar
[17] Kemmeler-Sack, S., Zeits. anorq. allgemeine Chem. 363, 295304 (1968).CrossRefGoogle Scholar
[18] Darshane, V.S. and Deshpande, V.V., J. Indian Chem. Soc. 50, 761763 (1973).Google Scholar
[19] Roth, R.S., J. Res. Nat. Bur. Standards 56, 1725 (1956).CrossRefGoogle Scholar
[20] Wald, J.W. and Offermann, P. in: Scientific Basis for Nuclear Waste Management V, Lutze, W., ed. (North-Holland Elsevier, NY 1982) p. 369378.Google Scholar
[21] Clinard, F.W. Jr, Hobbs, L.W., Land, C.C., Peterson, D.E., Rohr, D.L., and Roof, R.B., J. Nucl. Materials 105, 248256 (1982).CrossRefGoogle Scholar
[22] Clinard, F.W. Jr, Peterson, D.E., Rohr, D.L., and Hobbs, L.W., J. Nucl. Materials, in press.Google Scholar
[23] Pyatenko, Yu. A., Zhur. Struk. Khimii 11, 11311133 (1970) (trans. J. Struc. Chem. 11, 1062–1064, 1971).Google Scholar
[24] Felsche, J., Structure and Bonding 13, 99197 (1973).CrossRefGoogle Scholar