Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-01T22:00:11.806Z Has data issue: false hasContentIssue false

Critical issues In The Mechanical Reliability of Lightguide Fibers

Published online by Cambridge University Press:  10 February 2011

C. R. Kurkjian*
Affiliation:
Bellcore, 445 South Street, Morristown, NJ 07960, ckurkjia@notes.cc.bellcore.com
Get access

Abstract

In order to guarantee a minimum initial strength, lightguide fibers are proof-tested. However, the strength of these fibers is known to depend on time (due to fatigue and aging) and this time-dependence must be taken into account in the calculation of fiber lifetimes. While hermetic coatings can be applied to eliminate strength degradation with time, they are rarely used. It is thus necessary to understand the time-dependent behavior well enough to ensure a desired lifetime (without an excessive and costly safety factor), or alternatively, it is necessary to validate a fundamental strength limit. This paper discusses the progress that has been made on issues related to such fiber lifetime predictions. In particular, it is pointed out that the possible variations in flaw character and coating chemistry make simple generalizations difficult and require that fundamental understandings be developed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kurkjian, C.R., Krause, J.T. and Matthewson, M.J., J. Lightwave Tech. 7, 1360 (1989).10.1109/50.50715Google Scholar
2. Maurer, R.D., Appl.Phys. Lett. 27, 220 (1975).10.1063/1.88435Google Scholar
3. Paul, A. and Glaesemann, G.S. Proc. IWCS, 896 (1997).Google Scholar
4. Kurkjian, C.R. and Paek, U.C., Appl. Phys. Lett. 42, 251 (1983).10.1063/1.93905Google Scholar
5. Wang, T.T. and Zupko, H.M., J. Mat. Sci. 13,2241 (1978).10.1007/BF00541680Google Scholar
6. Krause, J. T., Proc. 51h Europ. Conf. Opt. Comm., Amsterdam, The Netherlands, 19.11 (1979).Google Scholar
7. Kurkjian, C.R., Simpkins, P.G. and Inniss, D., J. Am.Ceram. Soc. 76, 1106 (1993).10.1111/j.1151-2916.1993.tb03727.xGoogle Scholar
8. Bogatyrjov, V.A., Bubnov, M.M., Rumyantsev, S.D. and Semjonov, S.L., XVth Int. Glass Congress, St. Petersberg, 2b, 295 (1989).Google Scholar
9. Cook, R.L., unpublished work (1994).Google Scholar
10. Michalske, T.A., Smith, W.L. and Bunker, B.C., J. Am. Ceram. Soc. 74, 1993 (1991).10.1111/j.1151-2916.1991.tb07820.xGoogle Scholar
11. Muroake, M. and Abe, H., Mechanics and Materials for Electronic Packaging, 1, 141 ASME (1994).Google Scholar
12. Griffioen, W., Svensson, T. and Friderich, B., Proc. IWCS, 750 (1994).Google Scholar
13. Kurkjian, C. R., Biswas, D. and Yuce, H. H., SPIE, 2611, 56 ( 1995).Google Scholar
14. Hanson, T. A. and Glaesemann, G.S., J. Mat. Sci., 32, 5305 (1997).10.1023/A:1018662727060Google Scholar
15. Svensson, T., Proc. IWCS, 217 (1988).Google Scholar
16. Gouronnec, A. and Evanno, N., Proc. 46th IWCS, 906 (1996).Google Scholar
17. Sakaguchi, S., Abe, T. and Kawasaki, T., J. Mat. Sci., 17, 2878 (1982).10.1007/BF00644665Google Scholar
18. Lopez, A.R. and Overton, B.J., SPIE, 2290, 42 (1994).Google Scholar
19. Kurkjian, C.R., Armstrong, J.L., Matthewson, M.J. and Plitz, I., Proc. NFOEC' 96, 133 (1996).Google Scholar
20. Cuellar, E., Kennedy, M.T. and Roberts, D.R., Proc. IWCS, 689 (1992).Google Scholar
21. Mould, R.D. and Southwick, R.D., J.Am.Ceram. Soc.42, 582 (1959).10.1111/j.1151-2916.1959.tb13578.xGoogle Scholar