Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-19T17:57:38.070Z Has data issue: false hasContentIssue false

Correlation of Light-induced Enhancement of Open-Circuit Voltage and Structural Change of Heterogeneous Silicon Solar Cells

Published online by Cambridge University Press:  01 February 2011

Jeffrey Yang
Affiliation:
United Solar Systems Corp., 1100 West Maple Road Troy, MI 48084-5352 U.S.A.
Kenneth Lord
Affiliation:
United Solar Systems Corp., 1100 West Maple Road Troy, MI 48084-5352 U.S.A.
Baojie Yan
Affiliation:
United Solar Systems Corp., 1100 West Maple Road Troy, MI 48084-5352 U.S.A.
Arindam Banerjee
Affiliation:
United Solar Systems Corp., 1100 West Maple Road Troy, MI 48084-5352 U.S.A.
Subhendu Guha
Affiliation:
United Solar Systems Corp., 1100 West Maple Road Troy, MI 48084-5352 U.S.A.
Daxing Han
Affiliation:
Department of Physics and Astronomy, University of North Carolina Chapel Hill, NC 27599-3211 U.S.A.
Keda Wang
Affiliation:
Department of Physics and Astronomy, University of North Carolina Chapel Hill, NC 27599-3211 U.S.A.
Get access

Abstract

We observe a significant light-induced increase in the open-circuit voltage, Voc, of thin-film silicon solar cells whose intrinsic (i) layer consists of an amorphous and microcrystalline mixed phase. The increase depends on the i-layer thickness, the i-layer deposition temperature, the initial Voc values, and the light-soaking intensity. An increase of as large as 150 mV is observed. The original Voc is restored after subsequent thermal annealing. In-situ photoluminescence (PL) spectroscopy is used to investigate this metastable phenomenon. We find that the PL intensity and peak-energy position associated with the amorphous component of the heterogeneous material increase upon light soaking, suggesting a structural change. We propose that a reduction of microcrystalline volume fraction or size is responsible for the Voc enhancement.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yang, J. and Guha, S., Mater. Res. Soc. Proc. 557, p. 239 (1999).Google Scholar
2. Guha, S., Narasimhan, K. L., and Pieruszko, S. M., J. Appl. Phys. 52, 859(1981).Google Scholar
3. Matsuda, A., J. Non-Cryst. Solids 59&60, 767(1983).Google Scholar
4. Tsu, D. V., Chao, B. S., Ovshinsky, S. R., Guha, S., and Yang, J., Appl. Phys. Lett. 71, 1317(1997).Google Scholar
5. Guha, S., Yang, J., Williamson, D. L., Lubianiker, Y., Cohen, J. D., and Mahan, A. H., Appl. Phys. Lett. 74, 1860(1999).Google Scholar
6. Koh, J., Ferlauto, A. S., Rovira, P. I., Wronski, C. R., and Collins, R. W., Appl. Phys. Lett. 75, 2286(1999).Google Scholar
7. Yang, J., Lord, K., Guha, S., and Ovshinsky, S. R., Mater. Res. Soc. Proc. 609, A15.4 (2000).Google Scholar
8. Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Mueck, A., Rech, B., and Wagner, H., Solar Energy Materials and Solar Cells 62, 97(2000).Google Scholar
9. Vallat-Sauvian, E., Kroll, U., Meier, J., Wyrsch, N., and Shah, A., J. Non-Cryst. Solids Part A 266, 125(2000).Google Scholar
10. Tsu, D. V., Chao, B. S., Ovshinsky, S. R., Jones, S., Yang, J., Guha, S., and Tsu, R., Phys. Rev. B 63, 125338(2001).Google Scholar
11. Lord, K., Yan, B., Yang, J., and Guha, S., Appl. Phys. Lett. 79, 3800(2001).Google Scholar
12. Yue, G., Han, D., Williamson, D. L., Yang, J., Lord, K., and Guha, S., Appl. Phys. Lett. 77, 3185(2000).Google Scholar
13. Yang, J., Banerjee, A., and Guha, S., Appl. Phys. Lett. 70, 2975(1997).Google Scholar
14. Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292(1977).Google Scholar
15. Isomura, M., Yamamoto, H., Kondo, M., and Matsuda, A., Proceedings of the Second World Conference and Exhibition on Photovoltaic Solar Energy Conversion, 6–10 July 1998 (European Commission, Vienna, 1998), p. 925.Google Scholar
16. Nonomura, S., Gotoh, T., Nishio, M., Sakamoto, T., Kondo, M., Matsuda, A., and Nitta, S., Mater. Res. Soc. Symp. Proc. 557, 337(1999).Google Scholar
17. Stratakis, E., Spanakis, S., Tzanetakis, P., Fritzsche, H., Guha, S., and Yang, J., Appl. Phys. Lett. 80, 1734(2002).Google Scholar
18. Baugh, J. and Han, D., Mater. Res. Soc. Symp. Proc. 664, A19 (2001).Google Scholar
19. Kaiser, I., Nickel, N. H., Fuhs, W., and Pilz, W., Phys. Rev. B 58, R1718 (1998).Google Scholar
20. Baugh, J., Han, D., Kleinhammes, A., and Wu, Y., Mater. Res. Soc. Symp. Proc. 664, A27.4 (2001).Google Scholar
21. Mahan, A. H., Yang, J., Guha, S., and Williamson, D. L., Phys. Rev. B 61, 1677(2000).Google Scholar
22. Yang, L. and Chen, L., Mater. Res. Soc. Symp. Proc. 336, 669(1994).Google Scholar
23. Siamchai, P. and Konagai, M., Appl. Phys. Lett. 67, 3468(1995).Google Scholar
24. Longeaud, C., Kleider, J. P., Gauthier, M., Brüggemann, R., Poissant, Y., and Cabarrocas, P. Rocai, Mater. Res. Soc. Symp. Proc. 557, 501(1999).Google Scholar
25. Rocai Cabarrocas, P., St'ahel, P., Hamma, S., and Poissant, Y., Proceedings of the Second World Conference and Exhibition on Photovoltaic Solar Energy Conversion, 6-10 July 1998 (European Commission, Vienna, 1998), p. 355.Google Scholar
26. Williamson, D. L. (private communication).Google Scholar
27. Yang, J., Lord, K., Yan, B., Banerjee, A., and Guha, S., Proceedings of the 29th IEEE Photovoltaic Specialist Conference, New Orleans, 19-24 May 2002.Google Scholar