Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T09:19:28.362Z Has data issue: false hasContentIssue false

Correlation of Drain Current Pulsed Response with Microwave Power Output in AlGaN/GaN HEMTs

Published online by Cambridge University Press:  10 February 2011

S. C. Binari
Affiliation:
Naval Research Laboratory, Washington, D. C., 20375
K. Ikossi-Anastasiou
Affiliation:
Naval Research Laboratory, Washington, D. C., 20375
W. Kruppa
Affiliation:
Naval Research Laboratory, Washington, D. C., 20375
H. B. Dietrich
Affiliation:
Naval Research Laboratory, Washington, D. C., 20375
G. Kelner
Affiliation:
Naval Research Laboratory, Washington, D. C., 20375
R. L. Henry
Affiliation:
Naval Research Laboratory, Washington, D. C., 20375
D. D. Koleske
Affiliation:
Naval Research Laboratory, Washington, D. C., 20375
A. E. Wickenden
Affiliation:
Naval Research Laboratory, Washington, D. C., 20375
Get access

Abstract

The drain-current response to short (<1μs) gate pulses has been measured for a series of GaN HEMT wafers that have similar dc and small-signal characteristics. This response has been found to correlate well with the measured microwave power output. For example, for devices where the pulsed drain current is greater than 70% of the dc value, output power densities of up to 2.3 W/mm are attained. This is in contrast with 0.5 W/mm measured for devices with low pulse response (less than 20% of the dc value). These results, which can be explained by the presence of traps in the device structure, provide a convenient test which is predictive of power performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sheppard, S. T., Doverspike, K., Pribble, W. L., Allen, S. T., Palmour, J. W., Kehias, L. T., and Jenkins, T. J., to be published, IEEE EDL, Apr. 1999.Google Scholar
2. Binari, S. C., Dietrich, H. B., Kruppa, W., Kelner, G., Saks, N. S., Edwards, A., Redwing, J. M., Wickenden, A. E., and Koleske, D. D., Proc. Inter. Conf. Nitride Semicond., pp.476478, 1997.Google Scholar
3. Binari, S. C., Kruppa, W., Dietrich, H. B., Kelner, G., Wickenden, A. E., and Freitas, J. A. Jr, Solid-State Electron. 41, pp. 15491554, (1997).10.1016/S0038-1101(97)00103-2Google Scholar
4. Kruppa, W., Binari, S. C., and Doverspike, K., Electronics Lett. 31, pp. 1951–2, (1995).10.1049/el:19951298Google Scholar
5. Rocci, M., Physica 129B, pp. 119138, (1985).Google Scholar
6. Yeats, R., D'Avanzo, D. C., Chan, K., Fernandez, N., Taylor, T. W., and Vogel, C., IEEE IEDM Digest, pp. 842845, (1988).Google Scholar
7. Platzker, A., Palevsky, A., Nash, S., Struble, W., and Tajima, Y., IEEE MTT-S Digest, pp. 11371140, (1990).Google Scholar
8. Huang, J. C., Jackson, G., Shanfield, S., Hoke, W., Lyman, P., Atwood, D., Saledas, P., Schindler, M., Tajima, Y., Platzker, A., Masse, D., and Statz, H., IEEE MTT-S Digest, pp. 713716, (1991).Google Scholar