Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-06T20:32:43.330Z Has data issue: false hasContentIssue false

Cooperative Chemical Rebonding In The Segregation Of Impurities In Silicon Grain Boundaries

Published online by Cambridge University Press:  15 February 2011

A. Maiti
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 317831 Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235.
M. F. Chisholm
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 317831
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 317831
S. T. Pantelides
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235.
Get access

Abstract

With ab initio calculations we show that the experimentally observed large segregation energies of As at Si grain boundaries can be explained by the formation of isolated dimers or ordered chains of dimers of threefold-coordinated As along the cores of grain boundary dislocations. We also find the intriguing possibility that As segregation may drive structural transformation of certain grain boundaries. Recently we have obtained the first atomic-resolution STEM images of As in a Si grain boundary, consistent with the formation of As dimers. Segregation energy of As dimers was found to be significantly higher in isolated dislocation cores, where larger site-variation in strain than in grain boundaries lead to further lowering of the electronic levels of As deep into the bandgap.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Grovenor, C. R. M.,J. Phys. C 18, 4079 (1985).Google Scholar
2. Grovenor, C. R. M., Batson, P. E.,Smith, D. A., and Wang, C. Y., Phil. Mag. A 50, 409 (1984).Google Scholar
3. Mandurah, M. M., Saraswat, K. C., Helms, C. R., and Kamins, T. I.,J. Appl. Phys. 51, 5755 (1980).Google Scholar
4. Maurice, J.-L., in Polycrystalline Semiconductors II, edited by Werner, J. H. and Strunk, H. P., Springer Proceedings in Physics Vol.54 (Springer, Berlin, 1992), p. 166.Google Scholar
5. Bourret, A. and Rouvière, J. L., Springer Proc. Phys. 35, 8 (1989).Google Scholar
6. Kohyama, M., Phys. Stat. Sol. (b) 141, 71 (1987).Google Scholar
7. Paxton, A. T. and Sutton, A. P,J. Phys. C 21, L481 (1988).Google Scholar
8. Arias, T. A. and Joannopoulos, J. D., Phys. Rev. B 49, 4525 (1994).Google Scholar
9. Mott, N. F., Adv. Phys. 16, 49 (1967).Google Scholar
10. Maiti, A., Chisholm, M. F.,Pennycook, S. J., and Pantelides, S. T., Phys. Rev. Lett. 77, 1306 (1996).Google Scholar
11. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).Google Scholar
12. Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
13. Kerker, G. P.,J. Phys. C 13, L189 (1980).Google Scholar
14. Kleinmann, L. and Bylander, D. M., Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
15. King-Smith, R. D.,Payne, M. C., and Lin, J. S., Phys. Rev. B 44, 13063 (1991).Google Scholar
16. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).Google Scholar
17. Payne, M. C., Teter, M. P., Allan, D. C.,Arias, T. A., and Joannopoulos, J. D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
18. Vitek, V. and Wang, G. J., Surf. Sci. 144, 110 (1984); K. E. Sickafus and S. L. Sass, Acta Met. 35, 69 (1987); C. Rottman, J. de Phys. 49, C5, 313 (1988).Google Scholar
19. Hirth, J. P. and Lothe, J., Theory of Dislocations (McGraw-Hill, New York, 1982).Google Scholar
20. Maiti, A.,Kaplan, T.. Mostoller, M., Chisholm, M. F.,Pennycook, S. J., and Pantelides, S. T., Appl. Phys. Lett., tentative Jan. 20 (1997).Google Scholar
21. Jones, R.,J. Phys. (Paris), Colloq. 40, C633 (1979).Google Scholar
22. Hirsch, P. B.,J. Phys. (Paris), Colloq. 40, C627 (1979).Google Scholar
23. Duesbery, M. S.,Joos, B., and Michel, D. J., Phys. Rev. B 43, 5143 (1991).Google Scholar
24. Bigger, J. R. K., McInnes, D. A., Sutton, A. P., Payne, M. C., Stich, I., King-Smith, R. D., Bird, D. M., and Clarke, L. J., Phys. Rev. Lett. 69, 2224 (1992).Google Scholar
25. In the local density approximation used in the calculations, the bandgap is smaller than the experimental bandgap, so we cannot unambiguously determine the precise location of the level relative to the conduction band edge. Note that, however, for total-energy calculations performed here, only the occupied states are pertinent.Google Scholar
26. Jesson, D. E. and Pennycook, S. J., Proc. R. Soc. Lond. A 449, 273 (1995).Google Scholar
27. Chisholm, M. F., Mostoller, M.,Kaplan, T., and Pennycook, S. J., Phil. Mag. A, in press.Google Scholar
28. Chisholm, M. F., Maiti, A.,Pennycook, S. J., and Pantelides, S. T., Science, submitted.Google Scholar