Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T03:47:18.906Z Has data issue: false hasContentIssue false

Controlling the Particle Size of Quantum Dots Incorporated in Hybrid Materials

Published online by Cambridge University Press:  10 February 2011

Francisco Del Monte
Affiliation:
Department of Materials Science and Engineering, School of Engineering and Applied Science. University of California, Los Angeles, CA 90095, USA
Yuhuan Xu
Affiliation:
Department of Materials Science and Engineering, School of Engineering and Applied Science. University of California, Los Angeles, CA 90095, USA
John D. Mackenzie
Affiliation:
Department of Materials Science and Engineering, School of Engineering and Applied Science. University of California, Los Angeles, CA 90095, USA
B. Claflin
Affiliation:
Department of Materials Science and Engineering, School of Engineering and Applied Science. University of California, Los Angeles, CA 90095, USA
G. Lucovsky
Affiliation:
Department of Materials Science and Engineering, School of Engineering and Applied Science. University of California, Los Angeles, CA 90095, USA
Get access

Abstract

Semiconductor PbS quantum dot-doped Ormocers were successfully prepared by the sol-gel technique. Ormocers preparation was based on the use of trifunctional silane precursors at the solution stage. Formation of PbS particles took place in the pores of the Ormocers through lead precursor reaction with H2S gas. It was observed that temperature was an important factor in the reaction leading to the first appearance of PbS particles. The dot size of PbS was controlled through chemical interaction with the non-hydrolyzed groups of the trifunctional silane precursors. These groups prevent uncontrolled nucleation and aggregation processes during the particle formation and growth. The control of particle size was studied at different conditions for nucleation and aggregation. Determination of the average particle size was done by XR-Diffraction. Optical absorption spectra were also measured at the UV-VIS wavelength range. Absorption edge blue shifts show the quantum confinement effect in these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Philipp, G., Schmidt, H., J. Non-Crys. Solids 1984, 63,283.Google Scholar
2 Schmidt, H., J. Non-Crys. Solids 1985, 73, 681.10.1016/0022-3093(85)90388-6Google Scholar
3 Li, X., King, T.A., SPIE, Sol-Gel Optics III 2288, 216, (1994).Google Scholar
4 Julbe, A., Balzer, C., Barthez, J. M., Guizard, C., Labort, A., Cot, L., J. Sol-Gel Sci. and Technol. 4, 89, (1995).10.1007/BF00491675Google Scholar
5 Sanchez, C., Ribot, F., in Procedings of the 1st European Workshop on Hybrid Organic-Inorganic Materials (Synthesis, Properties and Applications). Ed: Sanchez, C., Ribot, F., 1993, P.9.Google Scholar
6 Yamane, M., Takada, T., Mackenzie, J. D., Li, C. Y. SPIE, Sol-Gel Optics II 1758, 577, (1992).Google Scholar
7 Zelner, M., Minti, H., Reisfeld, R., Cohen, H., Tenne, R., Chem. Mater. 9, 2541, (1997).10.1021/cm970245jGoogle Scholar
8 Kao, Y. H., Hayashi, K., Yu, L., Yamane, M., Mackenzie, J. D., SPIE, Sol-Gel Optics III 2288, 752, (1994).Google Scholar
9 Takada, T., Mackenzie, J. D., Yamane, M., Kang, K., Peyghambarian, N., Reeves, R., Knobbe, E., Powell, R., J. Mat. Sci. 31, 423, (1996).Google Scholar
10 Takada, T., Yano, T., Yasumori, A., Yamane, M., Mackenzie, J., J Non-Cryst Solids 147&148, 631, (1992).10.1016/S0022-3093(05)80689-1Google Scholar
11 Nogami, M., Zhu, Y., Tohyama, Y., Nagasaka, K., Tokizaki, T., Nakamura, A., J. Am. Ceram. Soc. 74(1), 238, (1991).10.1111/j.1151-2916.1991.tb07326.xGoogle Scholar
12 Nogami, M., Watabe, M., Nagasaka, K., SPIE, Sol-Gel Optics 1328, 119, (1990).Google Scholar
13 Nogami, M., Nagaska, K., Kato, E., J. Am. Ceram. Soc. 73(7), 2097, (1990).Google Scholar
14 Li, C. Y., Wilson, M., Haegel, N., Mackenzie, J. D., Knobbe, E., Porter, C., Reeves, R., Mat. Res. Soc. Symp. Proc. 272, 41, (1992).Google Scholar
15 Takada, T., Li, C. Y., Tseng, J. Y., Mackenzie, J. D., J. Sol-Gel Sci. and Technol. 1, 123, (1994).Google Scholar
16 Li, C. Y., Kao, Y. H., Hayashi, K., Takada, T., Mackenzie, J. D., Kang, K. I., Lee, S. G., Peyghambarian, N., Yamane, M., Zhang, G., Najafi, S. I., SPIE, Sol-Gel Optics III 2288, 151, (1994).Google Scholar
17 Kao, y. H., Hayashi, K., Yu, L., Yamane, M., Mackenzie, J. D., SPIE, Sol-Gel Optics III 2288, 752, (1997).Google Scholar
18 Ou, D. L., Seddon, A. B., SPIE, Sol-Gel Optics III 3136, 348, (1997).Google Scholar
19 Yamane, M., Takada, T., Li, C. Y., Mackenzie, J. D., SPIE, Sol-Gel Optics II 1758, 577, (1992).10.1117/12.132050Google Scholar
20 Nogami, M., Nagasaka, K., Kotani, K., J. Non-Cryst. Solids 1, 123, (1994).Google Scholar
21 Guglielmi, M., Martucci, A., Menegazzo, E., Righini, G. C., Pelli, S., Fick, J., Vitrant, G., J Sol-Gel Sci. and Technol. 8, 1017, (1997).Google Scholar
22 Dawnay, E. J. C., Fardad, M. A., Green, M., Yeatman, E. M., J. Mater. Res. 12(11), 3115, (1997).Google Scholar
23 Nogami, M., Nagasaka, K., Takata, M., J. Non-CrystaL. Solids. 122, 101, (1990).Google Scholar
24 Platschek, V., Shreder, B., Herz, K., Hilbert, U., Ossau, W., Schottner, G., Rahauser, O., Bishof, T., Lermann, G., marteny, A., Kiefer, W., Bacher, G., Forchel, A., Su, D., Giersig, M., Muller, G., Spanhel, L., J. Phys. Chem. 101, 8898, (1997).Google Scholar