Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-30T21:53:26.764Z Has data issue: false hasContentIssue false

Controlling Growth of InAs/GaAs Self-Assembled Quantum Dots to Give 1.3 μm Room Temperature Emission

Published online by Cambridge University Press:  10 February 2011

Surama Malik
Affiliation:
Centre for Electronic Materials and Devices, Blackett Laboratory, Imperial College, London, UK
Philip Siverns
Affiliation:
Centre for Electronic Materials and Devices, Blackett Laboratory, Imperial College, London, UK
David Childs
Affiliation:
Centre for Electronic Materials and Devices, Blackett Laboratory, Imperial College, London, UK
Christine Roberts
Affiliation:
Centre for Electronic Materials and Devices, Blackett Laboratory, Imperial College, London, UK
Jean-Michel Hartmann
Affiliation:
Centre for Electronic Materials and Devices, Blackett Laboratory, Imperial College, London, UK
Ray Murray
Affiliation:
Centre for Electronic Materials and Devices, Blackett Laboratory, Imperial College, London, UK
Get access

Abstract

We have investigated the extent to which the emission wavelength of self-assembled InAs/GaAs quantum dots can be controlled by growth parameters using conventional solid source MBE. Changing from conventionally high growth rates to a very low growth rate (LGR) and a relatively high substrate temperature, tunes the photoluminescence (PL) emission from 1.1 μm to 1.3 μm at room temperature. Atomic force micrographs obtained from uncapped samples reveal that these LGRQDs are larger, lower in density and extremely uniform in size. The improved size uniformity is reflected in the reduction of the PL linewidth from 78 meV to 22 meV. Under conditions of high excitation, emission from the ground and two excited states each separated by ∼70 meV is observed. This implies a parabolic confining potential. Time resolved photoluminescence (TRPL) measurements of dots grown under the various growth conditions yield radiative lifetimes which reflect the depth of the confining potential. A comparison of the decay times measured for the excited states show that the relaxation of carriers within the dots cannot be ascribed to phonon effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arakawa, Y. and Sakaki, H., Appl. Phys. Lett. 40, 939 (1982).10.1063/1.92959Google Scholar
2. Yu, H., Lycett, S., Roberts, C. and Murray, R., Appl. Phys. Lett. 69 (26), 4087 (1996).10.1063/1.117827Google Scholar
3. Mukai, K. and Sugawara, M., Jpn. J. Appl. Phys. 37, 5451 (1998).10.1143/JJAP.37.5451Google Scholar
4. Campbell, J. C., Huffaker, D. L., Deng, H., Deppe, D. G., Elect. Letts. 33 (15), 1337 (1997).10.1049/el:19970906Google Scholar
5. Mirin, R. P., Ibbletson, J. P., Nishi, K., Gossard, A. C., Bowers, E., Appl. Phys. Lett. 67 (25), 3795 (1995).10.1063/1.115386Google Scholar
6. Ishikawa, H., Shoji, H., Nakata, Y., Mukai, K., Sugawara, M., Egawa, M., Otsuka, N., Sugiyama, Y., Futatsugi, T., Yokoyama, N., J. Vac. Sci. Technol. A 16 (2), 794 (1998).10.1116/1.581060Google Scholar
7. Gray, J. W., Childs, D., Malik, S., Sivems, P., Roberts, C., Stavrinou, P. N., Whitehead, M., Murray, R., Parry, G., Electron. Letts. 35 (3), 242 (1999).10.1049/el:19990114Google Scholar
8. Huffaker, D., Park, G., Zou, Z., Shchekin, O. B., Deppe, D. G., Appl. Phys. Lett. 73 (18), 2564. (1998).10.1063/1.122534Google Scholar
9. Murray, R., Childs, D., Malik, S., Sivems, P., Roberts, C., Hartmann, J.-M., Stavrinou, P., Jpn. J. Appl. Phys. 38, part 1, No. 1B, 2022 (1999).Google Scholar
10. Murray, R., Malik, S., Sivems, P., Childs, D., Roberts, C., Joyce, B. A., Davock, H., Jpn. J. Appl. Phys. 38, No. 1B, 2054 (1999).Google Scholar
11. Ledentsov, N. N., Btihrer, J., Bimberg, D., Kochnev, I. V., Maximov, M. V., Kop'ev, P. S., Alferov, Zh. I., Kosogov, A. O., Ruvimov, S. S., Wemer, P., Gosele, U., Appl. Phys. Lett. 69 (9), 1095 (1996).10.1063/1.117069Google Scholar
12. Malik, S., Roberts, C., Murray, R., and Pate, M., Appl. Phys. Lett. 71,1987 (1997).10.1063/1.119763Google Scholar
13. Inoshita, T. and Sakaki, H., Phys. Rev. B. 46 (11), 7260 (1992-I).10.1103/PhysRevB.46.7260Google Scholar
14. Bockelmann, U. and Egeler, T., Phys. Rev. B. 46 (23),15574 (1992-I).10.1103/PhysRevB.46.15574Google Scholar