Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T11:52:39.282Z Has data issue: false hasContentIssue false

Controlled Synthesis and Characterization of Co-Au Core-shell Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Yuping Bao
Affiliation:
Depto. Ciencia de Materiales, ESFM-IPN, Mexico, DF 07338, Mexico
Hector Calderon
Affiliation:
Depto. Ciencia de Materiales, ESFM-IPN, Mexico, DF 07338, Mexico
Kannan M. Krishnan
Affiliation:
Depto. Ciencia de Materiales, ESFM-IPN, Mexico, DF 07338, Mexico
Get access

Abstract

Co-Au Core-shell nanoparticles are synthesized by slowly reducing an organo-gold compound on pre-made cobalt seeds with a weak reducer at mild condition. For the first time, these coreshell nanoparticles are generated in non-polar solvent in a controlled manner. The formation theory of core-shell structure, especially the seed size effect, is addressed as well. These coreshell structures are confirmed with a wide range of transmission electron microscopy (TEM) methods, which includes routine TEM images, high resolution TEM, and z-contrast imaging.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hütten, A., Sudfeld, D., Ennen, I., Reiss, G., Hachmann, W., Heinzmann, U., Wojczykowski, K., Jutzi, P., Saikaly, W. and Thomas, G., J. Biotech. 112, 47 (2004).Google Scholar
2. Cao, Y., Jin, R., Mirkin, C.A., J. Am. Chem. Soc. 123, 1961 (2001).Google Scholar
3. Kortan, A.R., Hull, R., Oplia, R.L., Bawendi, M.G., Steigerwald, M.L., Carrol, P.J., Brus, L.E., J. Am. Chem. Soc. 112, 1327 (1990).Google Scholar
4. Zeng, H., Li, J., Wang, Z.L., Liu, J.P., Sun, S., Nanoletters 4, 187 (2004).Google Scholar
5. Chen, M., Yamamuro, S., Farrell, D., Majetich, S.A., J. Appl. Phys. 93, 7551 (2003).Google Scholar
6. Zhou, W., Kumbhar, A., Wiemann, J., Fang, J., Carpenter, E.E., O'Conner, C.J., J. Solid State Chem. 159, 26 (2001).Google Scholar
7. Cho, S-J., Kauzlarich, S.M., Olamit, J., Liu, K., Grandjean, F., Rebboulh, L., Long, G.J., J. Appl. Phys. 95, 6804 (2004).Google Scholar
8. Lyon, J.L., Fleming, D.A., Stone, M.B., Schiffer, P., Williams, M.E., Nanoletters 4, 719 (2004).Google Scholar
9. Cushing, B.L., Golub, V., O'Connor, C.J., J. Phys. Chem. Solids 65, 825 (2004)Google Scholar
10. Bao, Y., Pakhomov, A.B. and Krishnan, Kannan M., J. Appl. Phys. 97, 10D310 (2005).Google Scholar
11. Bao, Y. and Krishnan, Kannan M., J. Mag. Mag. Mat. 293, 15 (2005).Google Scholar
12. Kashchiev, D. and Rosmalen, G.M. van, Cryst. Res. Technol. 38, 555 (2003).Google Scholar
13. Kashchiev, D., Nucleation Basic Theory with Applications, Oxford 2000 Google Scholar
14. Okamoto, H., Massalski, T.B., Hasebe, M., and Nishizawa, T., “Binary Alloy Phase Diagrams6(5), 247 (1985)Google Scholar
15. Mezey, L.Z. and Giber, J., Japan. J. Appl. Phys. 11, 1569 (1982).Google Scholar
16. Goyhenex, C. and Bulou, H., Phys. Rev. B 63, 235404 (2001)Google Scholar
17. Bao, Y., Calderon, H. and Krishnan, K.M., Appl. Phys. Lett. (submitted)Google Scholar