Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-02T04:48:20.102Z Has data issue: false hasContentIssue false

Controlled Surface Fermi-level on the SeS2-passivated n-GaAs (100)

Published online by Cambridge University Press:  10 February 2011

Jing xi Sun
Affiliation:
Department of Chemical Engineering
F. J. Himpsel
Affiliation:
Department of PhysicsUniversity of Wisconsin-Madison Madison, WI 53706
T. F. Kuech
Affiliation:
Department of Chemical Engineering
Get access

Abstract

Selenium disulfide surface treatment can unpin the surface Fermi-level on n-GaAs (100) surfaces, resulting in a reduction in the surface band bending. The long-term stability of the surface Fermi-level unpinning has been studied using photoreflectance spectroscopy under room ambient conditions. Our results show that the SeS2-treated n-GaAs (100) surface is stable up to four months with negligible shift in the surface Fermi-level being noted. The mechanism of the long-term stability is attributed to the layered surface structure formed on the SeS2-treated n- GaAs (100) surface. The chemical structure of the passivated surface was determined by synchrotron radiation photoemission spectroscopy. The outermost layer of sulfur and arsenicbased sulfides and selenides may protect the electronic passivating layer, which consists of gallium-based selenides, from interaction with the atmosphere.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kuruvilla, B. A., Ghaisas, S. V., Datta, A., Banerjee, S., Kulkami, S. K.. J. Appl. Phys. 73, 4, 384 (1993).Google Scholar
2. Nozaki, S., Tamura, S. and Takahashi, K.. J. Vac. Sci.Technol. B 13, p. 297 (1995).Google Scholar
3. Kuruvilla, B. A., Datta, A., Shekhawat, G. S., Sharma, A. K., Vyas, P. D., Gupta, R. P., and Kulkami, S. K., Appl. Phys. Lett. 69, 415 (1996).Google Scholar
4. Kuruvilla, B. A., Datta, A., Shekhawat, G. S., Sharma, A. K., Vyas, P. D., Gupta, R. P., and Kulkarni, S. K., J. Appl. Phys. 80, 6274 (1996).Google Scholar
5. Pollak, F. H. and Shen, H., Material Science & Engineering R 10 (7-8), (1993).Google Scholar
6. Van Hoof, C., Deneffe, K., DeBoeck, J., Arent, D. J., and Borghs, G., Appl. Phy. Lett., 54, 608 (1989).Google Scholar
7. Aspnes, D. E., Phys. Rev. B 10, 4228 (1974).Google Scholar
8. Yin, X., Chen, H-M., Pollak, F. H., Chan, Y. and Montano, P. A., Kirchner, P. D., Pettit, G. D., and Woodall, J. M., J. Vac. Sci. Technol. A10 (1), 131 (1992).Google Scholar
9. Yin, X., Chen, H-M., Pollak, F. H., Chan, Y. and Montano, P. A., Kirchner, P. D., Pettit, G. D., and Woodall, J. M., Appl. Phys. Lett., 50 (3), 260 (1991).Google Scholar
10. Kuech, T. F., Veuhoff, E., and Meyerson, B. S., J. Cryst. Growth, 68, 48 (1984).Google Scholar
11. Geisz, J. F., Safvi, S. A., and Kuech, T. F., J. Electrochem. Soc. 144 (2), 732(1997).Google Scholar
12. Lester, S. D., Kim, T. S., and Streetman, B. G., J. Appl. Phys. 60,4209 (1986).Google Scholar
13. Seebauer, E.G., J. Vac. Sci. Technol. A 7, 3279 (1989).Google Scholar
14. Oshima, Masaharu, Scimeca, Tom, Watanabe, Yoshino, Oigawa, Haruhiro and Nannichi, Yasuo Jpn. J. Appl. Phys. 32, 518 (1993).Google Scholar
15. Scimeca, T., Watanabe, Y., Maeda, F., Berrigan, R., and Oshima, M., J. Vac. Sci. Tech. B12, 3090 (1994).Google Scholar
16. Sun, Jingxi, Ju Seo, Dong, O'Brien, W. L., Himpsel, F. J., Kuech, T. F., Proceedings of the MRS Symposium on Infrared Applications of Semiconductor II ( In press).Google Scholar
17. Green, A. M. and Spicer, W. E., J. Vac. Sci. Technol. A 11, 1061 (1993).Google Scholar