Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T13:56:02.980Z Has data issue: false hasContentIssue false

Contacts to High Aluminum Fraction p-type Aluminum Gallium Nitride

Published online by Cambridge University Press:  11 February 2011

Brett A. Hull
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802
Suzanne E. Mohney
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802
Uttiya Chowdhury
Affiliation:
Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712
Russell D. Dupuis
Affiliation:
Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712
David Gotthold
Affiliation:
Emcore Corporation, Somerset, NJ 08873
Ronald Birkhahn
Affiliation:
Emcore Corporation, Somerset, NJ 08873
Milan Pophristic
Affiliation:
Emcore Corporation, Somerset, NJ 08873
Get access

Abstract

Gold, palladium, platinum or nickel ohmic contacts on Mg doped p-type AlxGa1-xN with x = 0.4 and x = 0.45 have been examined. The Au contact provided the lowest contact resistivity with pc = 1.8 (± 1.1) x 10−3 Ωcm2, but only following annealing at 850°C. For the Pd, Au, and Pt contacts annealed at greater than 700°C, a rapid degradation in the current-voltage curves was observed upon testing. The degradation was induced by exposure to sub-bandgap light and was reversed with a mild anneal at 500°C. Possible mechanisms for the degradation are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Pearton, S., and Fasol, G., The Blue Laser Diode: The Complete Story - 2nd Edition, Springer, Berlin (2000).Google Scholar
2. Kim, H., Yang, H., Huh, C., Kim, S.-W., Park, S.-J., and Hwang, H., Electron. Lett, 36, 908 (2000).Google Scholar
3. Blank, T.V., Goldberg, Y.A., Kalinina, E.V., Konstantinov, O.V., Nikolaev, A.E., Fomin, A.V., and Cherenkov, A.E., Semiconductors, 35, 529 (2001).Google Scholar
4. Jun, B.-H., Hirayama, H., and Aoyagi, Y., Jpn. J. Appl. Phys., 41, 581 (2002).Google Scholar
5. Zhang, A.P., Luo, B., Johnson, J.W., Ren, F., Han, J., and Pearton, S.J., Appl. Phys. Lett, 79, 3636 (2001)Google Scholar
6. Zhou, L., Ping, A.T., Khan, F., Osinski, A., Adesida, I., Electron. Lett, 36, 91 (2000).Google Scholar
7. Li, T., Lambert, D.J.H., Wong, M.M., Collins, C.J., Yang, B., Beck, A.L., Chowdhury, U., Dupuis, R.D. and Campbell, J.C., IEEEJ. Quant. Electron., 37, 538 (2001).Google Scholar
8. Johnson, C., Lin, J.Y., Jiang, H.X., Khan, M. Asif, and Sun, C.J., Appl. Phys. Lett, 68, 1808 (1996).Google Scholar
9. Hirsch, M.T., Wolk, J.A., Walukiewicz, W., and Haller, E.E., Appl. Phys. Lett, 71, 1098 (1997).Google Scholar
10. Chadi, D.J. and Chang, K.J., Phys. Rev. B, 39, 10063 (1989).Google Scholar
11. Neugebauer, J. and Van de Walle, C.G., Proc. 22nd Intl. Conf. Phys. Semicond, ed. Lockwood, D.J., World Scientific, Singapore, 2327 (1997).Google Scholar
12. Park, C.H. and Chadi, D.J., Phys. Rev. B, 55, 12995 (1997).Google Scholar
13. Van de Walle, C.G., Phys. Rev. B, 57, R2033 (1998).Google Scholar
14. McCluskey, M.D., Johnson, N.M., Van de Walle, C.G., Bour, D.P., and Kneissl, M., Phys. Rev. Lett, 80, 4008 (1998).Google Scholar
15. Vetury, R., Zhang, N.Q., Keller, S., and Mishra, U.K., IEEE Trans. Electron Dev., 48, 560 (2001).Google Scholar
16. Binari, S.C., Klein, P.B., and Kazior, T.E., Proc. IEEE, 90, 1048 (2002).Google Scholar
17. Neugebauer, J. and Van de Walle, C.G., Phys. Rev. Lett, 75, 4452 (1995).Google Scholar
18. Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys., 31, 1258 (1992).Google Scholar