Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T18:39:16.793Z Has data issue: false hasContentIssue false

Constrainment Effects of Interleaved Organic Molecules into Layered Double Hydroxides

Published online by Cambridge University Press:  01 February 2011

Marc Dubois
Affiliation:
Laboratoire des Matériaux Inorganiques, CNRS-UMR n°6002, Université Blaise Pascal, 63177 Aubière cédex, France; E-mail: fleroux@chimtp-univ.bpclermont.fr
El Mostafa Moujahid
Affiliation:
Laboratoire des Matériaux Inorganiques, CNRS-UMR n°6002, Université Blaise Pascal, 63177 Aubière cédex, France; E-mail: fleroux@chimtp-univ.bpclermont.fr
Jean-Pierre Besse
Affiliation:
Laboratoire des Matériaux Inorganiques, CNRS-UMR n°6002, Université Blaise Pascal, 63177 Aubière cédex, France; E-mail: fleroux@chimtp-univ.bpclermont.fr
Fabrice Leroux
Affiliation:
Laboratoire des Matériaux Inorganiques, CNRS-UMR n°6002, Université Blaise Pascal, 63177 Aubière cédex, France; E-mail: fleroux@chimtp-univ.bpclermont.fr
Get access

Abstract

Incorporation and subsequent stabilization of organic molecules into layered double hydroxide are investigated. Through two types of hybrid materials, organic dyes and aniline-based monomers interleaved between LDH materials of cation composition Zn2Al and Cu2Cr respectively, it is shown that the effect of the constrainment is revealed by the interactions different according to the molecule size and stacking as exemplified by dye molecules, orange 6 and green 25 acids and two aniline-based monomers, m-amino-4-benzenesulfonic and 3-aniline-1-propanesulfonic acids.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Leroux, F. and Besse, J.–P., Chem. Mater., 13, 3507 (2001).Google Scholar
Leroux, F. and Besse, J.–P., In Clay Surfaces: Fundamentals and Applications (vol.1). Ed. Wypych, F. and Satyanarayana, K.G., Elsevier - ISBN 0120884399 (2004).Google Scholar
2. Vieille, L., Moujahid, El M., Taviot-Guého, C., Besse, J.–P. and Leroux, F., J. Phys. Chem. Solids, 65, 385 (2004).Google Scholar
Vieille, L., Taviot-Guého, C., Besse, J.–P. and Leroux, F., Chem. Mater. 15, 4369 (2003).Google Scholar
Moujahid, EL M., Besse, J.–P. and Leroux, F., J. Mater. Chem., 12, 3324 (2002).Google Scholar
3. Bauer, J., Behrens, P., Speckbacher, M. and Langhals, H., Adv. Funct. Mater., 13, 241 (2003).Google Scholar
Latterini, L., Elisei, F., Aloisi, G. G., Costantino, U. and Nocchetti, M., Phys. Chem. Chem. Phys., 4, 2792 (2002).Google Scholar
Costantino, U., Coletti, N., Nocchetti, M., Aloisi, G. G., Elisei, F. and Latterini, L., Langmuir, 16, 10351 (2000).Google Scholar
4. Moujahid, El M., Dubois, M., Besse, J.–P. and Leroux, F., Chem. Mater., 14, 3799 (2002).Google Scholar
Moujahid, EL M., Leroux, F., Dubois, M. and Besse, J.–P., Compte Rendus de Chimie, 6, 259 (2003).Google Scholar
5. Vaysse, C., Guerlou-Demourgues, L., Duguet, E. and Delmas, C., Inorg. Chem., 42, 4559 (2003).Google Scholar
Vaysse, C., Guerlou-Demourgues, L., Duguet, E. and Delmas, C., Macromolecules, 37, 45 (2004).Google Scholar
6. Kanatzidis, M. G., Wu, C.-G., Marcy, H. O. and Kannewurf, C. R., J. Am. Chem. Soc., 111, 4139 (1989).Google Scholar