Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-01T19:15:57.100Z Has data issue: false hasContentIssue false

A Consistent Rationale for the Superior Strength and Ultra-Hardness of Ceramic Nano-Composite Coatings

Published online by Cambridge University Press:  17 March 2011

A. S. Argon
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
S. Veprek
Affiliation:
Institute for Chemistry of Inorganic Materials, Technical University of Munich, D-85747 Munich, Germany
Get access

Abstract

Nano-structured composite ceramic coatings such as TiN with Si3N4 orT iSi2 prepared by variousforms of plasma assisted CVD, composed of crystalline components of equiaxed TiN of several nm diameter, surrounded by amorphous Si3N4 intercrystalline layers of roughly 0.2 volume fraction have exhibited hardnesses in the range of 70-100 GPa-quite commensurate with polycrystalline diamond layers, and thermal stability up to 1000C. Preliminary considerations indicate that such ultra-hardness, uninfluenced by the usual artifacts of nano-indentations are not governed by processes of crystal plasticity in the crystalline component but by the characteristic flow mechanisms of the often topologically continuous amorphous component exhibiting “liquid-like” behavior in the constrained spaces between the crystalline components.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Weertman, J. R., Farkas, D., Hemker, K., Kung, H., Mayo, M., Mitra, R., and Swygenhoven, H. van, MRS Bulletin, 24(2)), 44, 1999.Google Scholar
2. Veprek, S., J. Vac. Sci. Techn., A17(5), 2401, (1999).Google Scholar
3. Veprek, S. and Argon, A. S., J. Vac. Sci. Tech., submitted for publication, (2001b).Google Scholar
4. Timoshenko, S. and Goodier, J. N., “Theory of Elasticity”, Second Edition McGraw-Hill: New York, (1951).Google Scholar
5. Evans, A. G., J. Amer. Ceram. Soc., 73, 187, (1990).Google Scholar
6. Haubensak, F. and Argon, A. S., J. Mater. Sci., 32, 1473, (1997).Google Scholar
7. Hall, E. O., Proc. Phys. Soc. (London), B64, 747, (1951).Google Scholar
8. Petch, N. J., J. Iron Steel Inst., 174, 25, (1953).Google Scholar
9. Fleck, N. A. and Hutchinson, J. W., J. Mech. Phys. Solids, 49, 2245, (2001).Google Scholar
10. Rose, J. H., Smith, J. R., Guinea, F., and Ferrante, J., Phys. Rev., B29, 29, (1984).Google Scholar
11. Smith, J. R., Ferrante, J., Vinet, P., Gray, J. G., Richter, R., and Rose, J., in “Chemistry and Physics of Fracture”, edited by Latanision, R. M. and Jones, R. H., Martinus Nijhoff: Dordrecht, p. 329, (1987).Google Scholar
12. Tabor, D., “The Hardness of Metals”, Oxford University Press: Oxford, (1951).Google Scholar
13. Deng, D., Argon, A. S. and Yip, S., Phil. Trans. Roy. Soc. (London), 329, 614, (1989a).Google Scholar
14. Cohen, M. H. and Grest, G. S., Phys. Rev. B20, 1077, (1979).Google Scholar
15. Schiotz, J., DiTolla, F. D. and Jacobson, K. W., Nature, 391, 561 (1998).Google Scholar