Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-21T21:49:26.410Z Has data issue: false hasContentIssue false

Connection between Structure and Electronic Properties in Epitaxial Magnetic Layers

Published online by Cambridge University Press:  10 February 2011

K. N. Altmann
Affiliation:
University of Wisconsin Madison, Madison WI 53706-1390
J. A. Con Foo
Affiliation:
University of Wisconsin Madison, Madison WI 53706-1390
F. J. Himpsel
Affiliation:
University of Wisconsin Madison, Madison WI 53706-1390
J. F. Kelly
Affiliation:
University of Wisconsin Madison, Madison WI 53706-1390
M. G. Lagally
Affiliation:
University of Wisconsin Madison, Madison WI 53706-1390
J. F. MacKay
Affiliation:
University of Wisconsin Madison, Madison WI 53706-1390
W. L. O'Brien
Affiliation:
University of Wisconsin Madison, Madison WI 53706-1390
J. E. Ortega
Affiliation:
Universidad del Pals Vasco, San Sebastian, Spain
D. Y. Petrovykh
Affiliation:
Universidad del Pals Vasco, San Sebastian, Spain
Get access

Abstract

This study explores the consequences of structure on the electronic properties of magnetic multilayers. Epitaxial layers of Co and Cu are grown on Cu(100) in a new deposition system that couples sputter-deposition with MBE and contains a wide range of characterization tools, including RHEED, LEED, and Kerr effect. This system can be coupled in situ to spin-polarized, angle-resolved photoemission and to resonant, magnetic X-ray scattering, both employing synchrotron radiation. The interface structure turns out to be critical in determining the coercivity and the presence of quantum well states, which determine oscillatory magnetic coupling.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. A series of articles on Magnetoelectronics is published in: Physics Today 48, April 1995, p. 2463.Google Scholar
2. Himpsel, F.J., Ortega, J.E., Mankey, G.J., andWillis, R.F., Magnetic Nanostructures, Advances in Physics 47, 511 (1998).Google Scholar
3. Ortega, J.E. and Himpsel, F.J., Phys. Rev. Lett. 69, 844 (1992); J.E. Ortega, F.J. Himpsel, G.J. Mankey, and R.F. Willis, Phys. Rev. B 47, 1540 (1993); F.J. Himpsel, Science 283, 1655 (1999).Google Scholar
4. Edwards, D.M., Mathon, J., Muniz, R.B., andPhan, M.S., Phys. Rev. Lett. 67, 493 (1991); M.D. Stiles, Phys. Rev. B 48, 7238 (1993); D.D. Koelling, Phys. Rev. B 50, 273 (1994); P. Bruno, Phys. Rev. B 52, 411 (1995).Google Scholar
5. Garrison, K., Chang, Y., andJohnson, P. D., Phys. Rev. Lett. 71, 2801 (1993); C. Carbone, E. Vescovo, O. Rader, W. Gudat, and W. Eberhardt, Phys. Rev. Lett. 71, 2805 (1993).Google Scholar
6. Ortega, J.E., Ndrmann, A., Altmann, K.N., O'Brien, W., Seo, D.J., Himpsel, F.J., Segovia, P., Mascaraque, A., andMichel, E.G., J. Magn. Magn. Mat., in press (1999).Google Scholar
7. Ortega, J.E. and Himpsel, F.J., Appl. Phys. Lett. 64, 121 (1994).Google Scholar
8. Coyle, S.T. and Scheinfein, M.R., J. Appl. Phys. 83, 7040 (1998); F.O. Schumann and J.A.C. Bland, J. Appl. Phys. 73, 5945 (1993); P. Krams, F. Laukus, R.L. Stamps, B. Hildebrands, and G. Giintherodt, Phys. Rev. Lett. 69, 3674 (1992).Google Scholar
9. A slight peak shift in Fig. 2 is probably due to a slight change in the detection angle (<1°).Google Scholar
10. Petrovykh, D. Y., Altmann, K. N., Höchst, H., Laubscher, M., Maat, S., Mankey, G. J., and Himpsel, F.J., Appl. Phys. Lett. 73, 3459 (1998).Google Scholar
11. Parkin, S.S. P., Appl. Phys. Lett. 61, 1358 (1992) and Phys. Rev. Lett. 71, 1641 (1993).Google Scholar
12. MacKay, J.F., Teichert, C., Savage, D.E., and Lagally, M.G., Phys. Rev. Lett. 77, 3925 (1996).Google Scholar