Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T04:52:07.193Z Has data issue: false hasContentIssue false

Conductivity Tailoring Of Melt-Processible Polyaniline In Polyolefin Blends By Using Viscosity Ratio

Published online by Cambridge University Press:  10 February 2011

J. O. Tanner
Affiliation:
Helsinki University of Technology, Department of Technical Physics, FIN-02150 Espoo, Finland
O. T. Ikkala
Affiliation:
Helsinki University of Technology, Department of Technical Physics, FIN-02150 Espoo, Finland
J. Laakso
Affiliation:
Neste Oy Chemicals, P. O. Box 310, FIN-06101 Porvoo, Finland.
P. Passiniemi
Affiliation:
Neste Oy Chemicals, P. O. Box 310, FIN-06101 Porvoo, Finland.
Get access

Abstract

Polyaniline (PANI) is a semi-rigid polymer which does not melt and has only limited solubility. Protonation to yield electrical conductivity generally renders a polyelectrolyte which is still less processible. Even selection of the dopant to be bulky or “functionalized” does not render PANI-complex to become melt-processible unless additional additives are used. Neste Oy (Finland) in cooperation with Uniax (U.S.A.) has identified several proprietary additives to allow melt-processibility. We show that in this way PANI-complex starts rheologically to behave in many respects like a conventional polymer. For example, in blends of PANI-complex with polypropylene, their viscosity ratio can be used to render either the PANI-complex or PP continuous, completely analogically to the “classical” polymer blends.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For the state of the art, see for example, MacDiarmid, A. G. and Epstein, A. J., Synth. Metals 65, 103 (1994).Google Scholar
2. See, for example, Wessling, B., Adv. Mater. 5, 300 (1993).Google Scholar
3. Cao, Y., Smith, P. and Heeger, A. J., Synth. Metals 48, 91 (1992); U. S. Patent No. 5.232.631 (1993).Google Scholar
4. Ikkala, O., Pietilä, L.–O., Passiniemi, P., Cao, Y., and Andreatta, A., European Patent Application No. 0 643 397 Al (1993).Google Scholar
5. Kärnä, T., Laakso, J., Levon, K., and Savolainen, E., U.S. Patent Application 5,346,649 (1994).Google Scholar
6. Levon, K., Ho, K.–H., Zheng, W.–Y., Laakso, J., Kärnä, T., Taka, T., and Österholm, J.–E., Polymer 36, 2733 (1995).Google Scholar
7. Kärnä, T., Laakso, J., Niemi, T., Ruohonen, H., Savolainen, E., Lindström, H., Virtanen, E., Ikkala, O., and Andreatta, A., U. S. Patent No. 5,340,499 (1994).Google Scholar
8. Vikki, T., Pietilä, L.–O., Österholm, H., Takala, A., Ahjopalo, L., Toivo, A., Levon, K., Passiniemi, P., and Ikkala, O., submitted to Macromolecules.Google Scholar
9. Ikkala, O., Pietilä, L.–O., Ahjopalo, L., Österholm, H., and Passiniemi, P., J. Chem. Phys, in press.Google Scholar
10. Jordhamo, G. M., Manson, J. M., and Sperling, L. H., Polym. Eng. Sci. 26, 517 (1986).Google Scholar