Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T03:57:32.933Z Has data issue: false hasContentIssue false

Conductivity Enhancement of Solid Ionic Conductors (CuBr, LiI) with Dispersed Oxide Particles (TiO2, A1203) : Experiments and Percolative Transport Model

Published online by Cambridge University Press:  10 February 2011

G. Albinet
Affiliation:
Laboratory IRPHE (CNRS), Faculty of Sciences of Marseille-St Jérôme, 13397 Marseille Cedex 20, France
J.-M. Debierre
Affiliation:
Laboratory MATOP (CNRS), Faculty of Sciences of Marseille-St Jérôme, 13397 Marseille Cedex 20, France
P. Knauth
Affiliation:
Laboratory EDIFIS (CNRS), Faculty of Sciences of Marseille-St Jérôme, 13397 Marseille Cedex 20, France
Get access

Abstract

The electrical conductivity of two-phase mixtures of an ionic conductor with dispersed insulator particles is described using a percolative transport model. The difference of grain sizes, the existence and anisotropy of confined high conductivity paths near the grain interfaces are implemented by simple rules. The model is capable of simulating the two cases of ionic conductor/insulator composites : those with and those without strong interfacial interactions. The discussed experimental examples are LiI-A1203, CuBr-A1203 and CuBr-TiO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Liang, C. C., J. Electrochem. Soc., 120 (1973) 1289.Google Scholar
2. Wagner, J. B., in High Conductivity Solid Ionic Conductors, Takahashi, T., ed. (World Scientific, Singapore 1989).Google Scholar
3. Maier, J., Prog. Solid State Ch., 23 (1995) 171.Google Scholar
4. Stoneham, A. M., Wade, E., Kilner, J. A., Mater. Res. Bull., 14 (1979) 661.Google Scholar
5. Uvarov, N. F., Isupov, V. P., Sharma, V., Shukla, A. K., Solid State Ionics, 51 (1992) 41.Google Scholar
6. Bunde, A., Dieterich, W., Roman, H. E., Phys. Rev. Lett., 55 (1985) 5.Google Scholar
7. Roman, H. E., Bunde, A., Dieterich, W., Phys. Rev. B, 34 (1986) 3439.Google Scholar
8. Becquart, A., Cabané, F., Knauth, P., J. Electroceramics, 1 (1997) 173.Google Scholar
9. Knauth, P., Albinet, G., Debierre, J.-M., Ber. Bunsenges. Phys. Chem., 102 (1998) 945.Google Scholar
10. Desvals, M.-A., Knauth, P., J. Phys. Chem. Solids, 58 (1997) 319.Google Scholar
11. Debierre, J.-M., Knauth, P., Albinet, G., Appl. Phys. Lett., 71 (1997) 1335.Google Scholar
12. Fleig, J., Maier, J., J. Electrochem. Soc., 145 (1998) 2081.Google Scholar