Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-30T07:56:34.213Z Has data issue: false hasContentIssue false

Computer Simulation of Xe adsorption in Zeolite Y

Published online by Cambridge University Press:  10 February 2011

Vishwas Gupta
Affiliation:
Department of Chemical Engineering and Material Science, University of Minnesota, 421 Washington Avenue S.E., Minneapolis, MN55455
H. Ted Davis
Affiliation:
Department of Chemical Engineering and Material Science, University of Minnesota, 421 Washington Avenue S.E., Minneapolis, MN55455
Alon V. McCormick
Affiliation:
Department of Chemical Engineering and Material Science, University of Minnesota, 421 Washington Avenue S.E., Minneapolis, MN55455
Get access

Abstract

Computer modeling of fluids in zeolites can provide a detailed molecular level understanding of the process of adsorption and diffusion under the influence of the 3-D potential field and the confinement offered by the crystal structure. We have shown that there is a strong link between the location, geometry and energetics of sites and the observed thermodynamics and spectroscopy of the adsorbates. Here we report on the modeling of Xe in zeolite Y, which is of interest both because it is commercially important and because it offers two distinct adsorption sites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fraissard, J. & Ito, T.. Zeolites 8, 350 (1988).Google Scholar
2. Barrie, P. J. & Klinowski, J.. Prog. NMR Spec. 24, 109158 (1992).Google Scholar
3. Van Tassel, P. R., Davis, H. T. & McCormick, A. V.. Mol. Phys. 76, 411432 (1992).Google Scholar
4. Yashonath, S. & Santikary, P.. J. Phys. Chem. 97, 38493857 (1993).Google Scholar
5. Jameson, C. J., Jameson, A. K., Gerald, R. E. & Lim., H. M. J. Chem. Phys. 103, 8811 (1995).Google Scholar
6. Fitch, A. N., Jobic, H. & Renouprez, A.. J. Phys. Chem. 90, 1311 (1986).Google Scholar
7. Ito, T. & Fraissard, J., J. Chem. Phys. 76, 289 (1982).Google Scholar
8. Gupta, V., Davis, H. T. & McCormick, A. V.. J. Phys. Chem. accepted (1996).Google Scholar
9. Kiselev, A. V., Du, P. Q. J. Chem. Soc., Faraday Trans. 2, 73, 679 (1981).Google Scholar
10. Van Tassel, P. R., Phillips, J. C., Davis, H. T. & McCormick, A. V.. J. Mol. Graph. 11, 180 (1993).Google Scholar
11. Yashonath, S., Demontis, P. & Klein, M. L..Chem. Phys. Lett. 153, 551 (1988).Google Scholar
12. June, R. L., Bell, A. T. & Theodorou, D. N. J. Phys. Chem. 95, 8866 (1991).Google Scholar
13. Auerbach, S. M., Henson, N. J., Cheetham, A. K. & Metiu, H. I. J. Phys. Chem. 99, 10600 (1995).Google Scholar
14. Van Tassel, P. R., Somers, S. A., Davis, H. T. & McCormick, A. V. Chem. Eng. Sci. 49, 2979 (1994).Google Scholar
15. Ripmeester, J. A. & Ratcliffe, C. I., Anal. Chim. Acta 283, 1103 (1993).Google Scholar
16. Cheung, T. T. P., Fu, C. M., Wharry, S., J. Phys. Chem. 92, 5170 (1988).Google Scholar
17. Van Tassel, P. R., Davis, H. T. & McCormick, A. V. AICHE J. 40, 925 (1994)Google Scholar
18. Keffer, D., Gupta, V., Kim, D., Lenz, E., Davis, H. T., McCormick, A. V., J. Mol. Graph. accepted (1996).Google Scholar