Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-16T13:34:33.459Z Has data issue: false hasContentIssue false

Computer Simulation of Grain Growth in Polycrystalline Aggregates

Published online by Cambridge University Press:  21 February 2011

M. P. Anderson
Affiliation:
Exxon Research and Engineering CompanyP.O. Box 45 Linden, New Jersey 07036
D. J. Srolovitz
Affiliation:
Exxon Research and Engineering CompanyP.O. Box 45 Linden, New Jersey 07036
G. S. Grest
Affiliation:
Exxon Research and Engineering CompanyP.O. Box 45 Linden, New Jersey 07036
P. S. Sahni
Affiliation:
Exxon Research and Engineering CompanyP.O. Box 45 Linden, New Jersey 07036
Get access

Extract

The physical and chemical properties of materials are determined in part by microstructure. Grain orientation and size in polycrystalline aggregates affect, for example, yield strength, catalytic efficiency, chemisorption, physisorption, fracture and a host of other properties. The final grain morphology is often determined by thermal processing, addition of a second phase, deformation, etc. However, in order to effectively tailor the microstructure for specific applications, the mechanism and kinetics of grain growth must be known. Unfortunately, present theories predict grain growth kinetics (1–3) which often differ from experimental observation, have little predictive ability with respect to microstructure and are not easily generalized to account for experimentally controllable factors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Feltham, P., Acta Metall. 5, 97 (1957).Google Scholar
2. Hillert, M., Acta Metall. 13, 227 (1965).Google Scholar
3. Louat, N. P., Acta Metall. 22, 721 (1974).Google Scholar
4. Srolovitz, D. J., Anderson, M. P., Grest, G. S., and Sahni, P. S., Scr. Metall. 17, 241 (1983).Google Scholar
5. Anderson, M. P., Srolovitz, D. J., Grest, G. S., and Sahni, P. S., Acta Metall., in press.Google Scholar
6. Srolovitz, D. J., Anderson, M. P., Grest, G. S., and Sahni, P. S., Acta Metall., in press.Google Scholar
7. Sahni, P. S., Grest, G. S., Anderson, M. P. and Srolovitz, D. J., Phys. Rev. Lett. 50, 263 (1983).Google Scholar
8. Sahni, P. S., Srolovitz, D. J., Grest, G. S., Anderson, M. P. and Safran, S. A., Phys. Rev. B 28, 2705 (1983).Google Scholar
9. Haessner, F. and Hofman, S. in “Recrystallization of Metallic Materials”, ed. by Haessner, F., Riederer Verlag GmbH, Dr., Stuttgart, FRG, 63 (1978).Google Scholar
10. Sahni, P. S., Grest, G. S. and Safran, S. A., Phys. Rev. Lett. 50, 60 (1983).Google Scholar
11. Phani, M. K., Lebowitz, J. L., Kalos, M. H., and Penrose, O., Phys. Rev. Lett. 45, 366 (1980).Google Scholar
12. Rhines, F. R. and Craig, K. R., Met. Trans. 5, 413 (1974).Google Scholar
13. Gordon, P. and El-Bassyouni, T. A., Trans. AIME 233, 391 (1965).Google Scholar
14. Hu, H., Can. Met. Quarterly 13, 275 (1974).Google Scholar
15. Bolling, G. F. and Winegard, W. C., Acta Metall. 6, 283 (1958).Google Scholar
16. Drolet, J. P. and Galobois, A., Acta Metall. 16, 1387 (1968).Google Scholar
17. Holmes, E. L. and Winegard, W. C., Acta Metall. 7, 411 (1959).Google Scholar
18. Beck, P. A., Phil. Mag. Suppl. 3, 245 (1954).Google Scholar
19. Aboav, D. A. and Langdon, T. G., Metallography 2, 171 (1969).Google Scholar
20. Desch, C. H., J. Inst. Metals 22, 241 (1919).Google Scholar
21. Simpson, C. J., Beingessner, C. J. and Winegard, W. C., Trans. AIME 239, 587 (1967).Google Scholar