Hostname: page-component-68945f75b7-6cjkg Total loading time: 0 Render date: 2024-09-04T10:14:14.343Z Has data issue: false hasContentIssue false

Computer Modeling of the Optical Properties of Transition-Metal Ions in Solids

Published online by Cambridge University Press:  21 February 2011

Ralph H. Bartram*
Affiliation:
University of Connecticut, Department of Physics and Institute of Materials Science, Storrs, CT 06269–3046, U.S.A
Get access

Abstract

Computational methods for modeling the optical properties of substitutional transition-metal impurities in insulating solids, potentially applicable to some scintillator and phosphor materials, are reviewed. Methods considered include crystal-field and semi-empirical ligand-field models; SCF-Xα-SW, SCF-RHF-LCAO, SCF-UHF-LCAO and CI ab initio methods: and ICECAP and HADESR embedded cluster methods with lattice relaxation. A detailed example of the application of the HADESR method to crystal-field spectra of Cr3+ in halide elpasolites is described. In this method, ab initio molecular-orbital calculations with effective core potentials are performed for selected ionic configurations. Simultaneous relaxation of the cluster and surrounding lattice, with mutual pair. potential interactions, is accomplished by a modified lattice statics program. Calculated properties include pressure-dependent optical transition energies, vibration frequencies and radiationless transition rates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Burns, R.G., Mineralogical Applications of Crystal Field Theory, 2nd ed. (Cambridge University Press, Cambridge, 1993)Google Scholar
2 Blasse, G., Structure and Bonding 42, 1 (1980)10.1007/3-540-10395-3_1Google Scholar
3 Bethe, H., Ann. Physik 3, 135 (1929)Google Scholar
4. Vieck, J.H Van. Theory of Magnetic and Flectric Susceptibilities (Oxford University Press, Oxford, 1932)Google Scholar
5 Abragam, A. and Bleaney, B., Electron Paramanetic Resonance of Transition (OxfordUniversity press, Oxford 1970)Google Scholar
6 Sugano, S.. Tanabe, Y. and Kamimura, H., Multiples of Transition-Metal lons in Crystals (Academic Press, New York and London, 1970)Google Scholar
7 VanVleck, J.H., J. Chem. Phys. 3, 803 (1935); 3, 807 (1935)10.1063/1.1749595Google Scholar
8 Wolfsberg, M. and Helmholz, L., J. Chem. Phys. 20, 837 (1952)10.1063/1.1700580Google Scholar
9 Ballhausen, C.J., Intorduction to Ligand Field Theory (MaGraw-Hill. New York, 1960)Google Scholar
10 Johnson, K.H., Advan. Quantum Chem. 7, 143 (1973)10.1016/S0065-3276(08)60561-4Google Scholar
11 Slater, J.C., Advan. Quantum Chem. 6, 1 (1972)10.1016/S0065-3276(08)60541-9Google Scholar
12 Ziegler, C., Rauk, A. and Baerends, F.J., Theoret. Chim. Acta 43, 261 (1977)10.1007/BF00551551Google Scholar
13 Sherman, D.M., Phys. Chem. Minerals 14, 355 (1987); 14, 364 (1987)10.1007/BF00309810Google Scholar
14 Ziegler, P., Rauk, A. and Baerends, E.J., Chem. Phys. 16, 209 (1976)10.1016/0301-0104(76)80056-0Google Scholar
15 Michel-Calendrini, F.M. II, . Chermette, H. and Weber, T., J. Phys. C:Solid St. Phys. 13, 1427 (1980)10.1088/0022-3719/13/8/013Google Scholar
16 Johansen, H., Chem. Phys. Letters 17, 569 (1972)10.1016/0009-2614(72)85108-XGoogle Scholar
17 Johansen, H. and Rettrup, S., Chem. Phys. 74, 77 (1983)10.1016/0301-0104(83)80009-3Google Scholar
18 Johansen, H., Mol. Phys. 49, 1209 (1983)10.1080/00268978300101881Google Scholar
19 Johansen, H., Chem. Phys. Letters 156, 592 (1989)10.1016/S0009-2614(89)87237-9Google Scholar
20 Szabo, A. and Ostlund, N.S., Modern Quantum Chemistry 1st ed., revised (McGraw-Hill, New York, 1989)Google Scholar
21 Hay, P.J. and Wadt, W.R., J. Chem. Phys. 82, 270 (1985)10.1063/1.448799Google Scholar
22 Ermler, W.C., Ross, R.C. and Christiansen, P.A., Advan. Quantum Chem. 19, 139 (1988)10.1016/S0065-3276(08)60615-2Google Scholar
23 Oosterhout, A.B. van, J. Chem. Phys. 67, 2412 (1977)10.1063/1.435212Google Scholar
24 Fisher, A.J., Rev. Solid State Sci. 5, 107 (1991)Google Scholar
25 Sangster, M.J.J. and Dixon, M., Adv. Phys. 25, 247 (1976)10.1080/00018737600101392Google Scholar
26 Car, R. and Parrinello, M., Phys. Rev. Letters 55, 2471 (1985)10.1103/PhysRevLett.55.2471Google Scholar
27 Vita, A. De, Gillan, M.J., Lin, J.S., Payne, M.C., Stich, I. and Clarke, I.J., Phys. Rev. Letters 68, 3319 (1992)Google Scholar
28 Norgett, M.J., Hauwell Report AE1LE-R 7650 (1974)Google Scholar
29 Dick, B.G. and Overhauser, W.A., Phys. Rev. 112, 90 (1958)10.1103/PhysRev.112.90Google Scholar
30 Mott, N.F. and Littleton, M.J., Trans. Faraday Soc. 34, 485 (1938)Google Scholar
31 Harding, L.H, Harker, A.H., Keegstra, P.B., Pandey, R., Vail, J.M. and Woodward, C., Physica 131B. 151 (1985)Google Scholar
32 Vail, J.M., J. Phys. Chem. Solids 51, 589 (1990)10.1016/0022-3697(90)90139-7Google Scholar
33 Andrews, L.J., Lempicki, A., McCollum, B.C., Giunta, C.J., Bartram, R.H. and Dolan, J.F., Phys. Rev. B34, 2735 (1986)10.1103/PhysRevB.34.2735Google Scholar
34 Dolan, J.F., Rinzler, A.G., Kappers, I.A. and Bartram, R.H., J. Phys. Chem. Solids 53, 905 (1992)10.1016/0022-3697(92)90117-VGoogle Scholar
35 Rinzler, A.G., Dolan, J.F., Kappers, L.A., Hamilton, D.S. and Bartram, R.H., J. Phys. Chem. Solids 54, 89 (1993)10.1016/0022-3697(93)90119-CGoogle Scholar
36 Woods, A.M., Sinkovits, R.S., Charpie, J.C., Huang, W.I., Bartram, R.H. and Rossi, A.R., J. Phys. Chem. Solids 54, 543 (1993)10.1016/0022-3697(93)90232-GGoogle Scholar
37 Davidson, E.R., QCPE 23, Phrogram No. 580 (1991.)Google Scholar
38 Sinkovits, R.S. and Bartram, R.H., J. Phys. Chem. Solids 52, 1137 (1991)10.1016/0022-3697(91)90046-3Google Scholar
39 Sinkovits, R.S., Woods, A.M. and Bartram, R.H., to be published.Google Scholar
40 Woods, A.M., Sinkovits, R.S. and Bartram, R.H., J. Phys. Chem. Solids (in press)Google Scholar
41 Bartram, R.H., Charpie, J.C., Andrews, L.J. and Lempicki, A., Phys. Rev. B34, 2741 (1986)10.1103/PhysRevB.34.2741Google Scholar
42 Bartram, R.H., J. Phys. Chem. Solids 51, 641 (1990)10.1016/0022-3697(90)90141-2Google Scholar