Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-27T06:50:41.603Z Has data issue: false hasContentIssue false

Computational Simulation of Photoluminescence and Reflectivity Spectra of a Strained Layer Superlattice

Published online by Cambridge University Press:  15 February 2011

M. Di Blasio
Affiliation:
Université Montpellier II, Groupe d'Etude des Semiconducteur, URA 357 du CNRS, CC 074, Place E. Bataillon, 34095 Montpellier Cedex 5, France.
M. Averous
Affiliation:
Université Montpellier II, Groupe d'Etude des Semiconducteur, URA 357 du CNRS, CC 074, Place E. Bataillon, 34095 Montpellier Cedex 5, France.
Get access

Abstract

Powerful mathematical tools have made it possible to simulate the optical spectra of strained layer superlattices. The results of these calculations are compared to experimental ones obtained on ZnS-ZnSe SLSs. The photoluminescence spectra is dominated by a single major peak with a long asymmetrical tail end or a secondary peak at lower energies. This secondary peak or tail end is attributed to the disorder within the superlattice. The PL spectra is simulated using a novel model based on the following parameters; the free exciton energy, the strain/stress state between the lattice constants, the probability of an occurrence of a dislocation, the probability that the dislocation generates and propagates and the critical thickness. The reflectivity simulation is also novel and is based on an impedance in a spatial dispersion model. It is essential to consider the strain that is induced in the SL, when the dielectric constant is dependent on the variation of the frequency near the fundamental transition energies. As a result only normal incidence is considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 The Math Works Inc, MATLAB-User’s Guide, Ver 4.21c (The Mathworks, Natwick, 1994) pp 1.11.30 Google Scholar
2 Ahn, D., Physica B, 191, 140 (1993)Google Scholar
3 Gorczyca, I. and Christensen, N. E., Phys. Rev. B 48, 17202 (1993)Google Scholar
4 Lindsay, J. K. and Katz, S., Dynamics of Physical Circuits and Systems, (Matrix Publishers Inc., Beavertown, 1978) pp. 1141 Google Scholar
5 Dorf, R., Modern Control Systems, 5th ed. (Addison-Wesley Publishing Co., Reading, 1989) pp. 2995 Google Scholar
6 Blasio, M. Di, Calas, J., Averous, M., Oral Presentation 1995 MRS Spring Meeting, San Francisco, CA, 1995 Google Scholar
7 Blasio, M. Di, PhD thesis, Université Montpellier II, (In progress for July 1995)Google Scholar
8 Tu, C., Mayer, J. W. and Feldman, L. C., Electronic Thin Film Science for Electrical Engineers and Material Scientists, (Macmillam Publishing Co., New York, 1992) pp. 46221 Google Scholar
9 Cohen-Solal, G., Bailly, F. and Barbe, M., J. Cryst. Growth, 138, 66 (1994)Google Scholar
10 Shahzad, K., Olego, D. and Walle, C. G. Van de, Phys. Rev. B 38, 1417 (1988)Google Scholar
11 Pong, C., Feigelson, R. S. and Demattei, R., J. Cryst. Growth, 128, 650 (1993)Google Scholar
12 Brown, D., Russell, G. J. and Woods, J., J. Appl. Phys. 66, 129 (1989)Google Scholar
13 Guan, Z. P., Song, S. H., Fan, G. H., Fan, X. W., Peng, Y. G., and Yuk, Y. K., J. Cryst. Growth, 138, 534 (1994)Google Scholar
14 Gil, B., Blasio, M. Di, Cloitre, T., Bigenvald, P., Aigouy, L., Briot, O., Briot, N. and Aulombard, R. L., J. Electronic Materials, (in press)Google Scholar
15 Gil, B., Cloitre, T., Blasio, M. Di, Bigenvald, P., Aigouy, L., Briot, N., Briot, O., Bouchara, D., Aulombard, R.L. and Calas, J., Phys. Rev. B, 50, (in press)Google Scholar
16 Adby, P. R. and Dempster, M. A. H., Introduction to Optimization Methods, (Chapman and Hall, London, 1974) pp. 118 Google Scholar
17 Yang, F, Parbrook, P. J., Henderson, B., O’Donnell, K. P., Wright, P. J. and Cockayne, B., Appl. Phys. Lett. 59, 2142 (1991)Google Scholar
18 O’Donnell, P. J. Parbrook, Yang, F., Chen, X., Irvine, D. J., Trager-Cowan, C., Henderson, B., Wright, P. J., and Cockayne, B., J. Cryst. Growth, 117, 497 (1992)Google Scholar
19 Kawakami, Y., Taguchi, T., and Hiraki, A., J. Cryst. Growth, 93, 714 (1988)Google Scholar
20 Kuwabara, H., Fujiyasu, H., Shimizu, H., Sasakl, A. and Yamada, S., J. Cryst. Growth, 72, 299 (1985)Google Scholar
21 Streetman, B. G., Solid State Electronic Devices, 3rd ed. edited by Holonyak, N. Jr. (Prentice-Hall, Engelwoods Cliff, 1990) pp 96100 Google Scholar
22 Yamada, Y. and Taguchi, T., J. Cryst. Growth, 101, 661 (1990)Google Scholar
23 Taguchi, T., Kawakami, Y., and Yamada, Y., Physica B, 191, 23 (1993)Google Scholar
24 Hopfield, J. J. and Thomas, D. G., Phys. Rev. 132, 563 (1963)Google Scholar
25 Abounadi, A., Blasio, M. Di, Bouchara, D., Calas, J., Averous, M., Briot, O., Briot, N., Cloitre, T., Aulombard, R. L. and Gil, B., Phys. Rev. B, 50, 11677 (1994)Google Scholar
26 Leiderer, H., Jahn, G., Silberbauer, M., Kuhn, W., Wagner, H. P., Limmer, W., and Gebhardt, W., J. Appl. Phys., 70, 398 (1991)Google Scholar
27 Crook, A. W., J.O.S.A., 38, 954 (1948)Google Scholar
28 Rouard, P., Ann d. Phys., 7, 291 (1937)Google Scholar
29 Vasicek, A., J. de Physique, 11, 342 (1950)Google Scholar
30 Heavens, O. M., Optical Properties of Thin Solid Films, (Dover, New York, 1991) pp 4695 Google Scholar
31 Cheng, D. K., Field and Wave Electromagnetics, 2nd ed. (Addison-Wesley Reading, 1989) pp. 307406 Google Scholar
32 Duff, K., Aust. J. Phys, 47, 77 (1994)Google Scholar
33 Bastard, G., Brum, J. A., and Ferreira, R., Electronic States in Semiconductor Heterostructures, edited by Ehrenreich, H. and Turnbull, D. (Solid State Physics 44, Cambridge, Mass, 1991) pp. 229415 Google Scholar