Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T12:18:57.523Z Has data issue: false hasContentIssue false

Computational Modeling of Direct Print Microlithography

Published online by Cambridge University Press:  10 February 2011

A. A. Darhuber
Affiliation:
Interfacial Science Laboratory, Dept. of Chemical Engineering, Princeton University
S. M. Miller
Affiliation:
Interfacial Science Laboratory, Dept. of Chemical Engineering, Princeton University
S. M. Troian
Affiliation:
Interfacial Science Laboratory, Dept. of Chemical Engineering, Princeton University
S. Wagner
Affiliation:
Dept. of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
Get access

Abstract

Using a combination of experiment and simulations, we have studied the equilibrium shapes of liquid microstructures on flat but chemically heterogeneous substrates. The surface patterns, which define regions of different surface energy, induce deformations of the liquid-solid contact line, which in turn can either promote or impede capillary break-up and bulge formation. We study numerically the influence of the adhesion energies on the hydrophilic and hydrophobic surface areas, the pattern geometry and the deposited fluid volume on the liquid surface profiles

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kaneko, E., Electrochem. Soc. Proc. 96–23, 8 (1996).Google Scholar
[2] Mikami, Y. et al. , IEEE Transact. Electr. Dev. 41, 306 (1994).Google Scholar
[3] Asada, H., Hayama, H., Nagae, Y., Okazaki, S., Akimoto, Y., Saito, T., Conference Record of the 1991 Int. Display Research Conference, p. 227 (1991)Google Scholar
[4] Garnier, F., Hajlaoui, R., Yassar, A., Srivastava, P., Science 265, 1684 (1994).Google Scholar
[5] Ridley, B. A., Nivi, B., Jacobson, J. M., Science 286, 746 (1999).Google Scholar
[6] Liang, T.-X., Sun, W. Z., Wang, L.-D., Wang, Y. H., Li, H.-D., IEEE Transact. Components, Packaging and Manufacturing Technology B 19, 423 (1996).Google Scholar
[7] Bao, Z., Feng, Y., Dodabalapur, A., Raju, V. R., Lovinger, A., Chem. Mater. 9, 1299 (1999).Google Scholar
[8] Rogers, J. A., Bao, Z., Makhija, A., Braun, P., Adv. Mater. 11, 741 (1999).Google Scholar
[9] Bao, Z., Adv. Mater. 12, 227 (2000).Google Scholar
[10] Hebner, T. R., Wu, C. C., Marcy, D., Lu, M. H., Sturm, J. C., Appl. Phys. Lett. 72, 519 (1998).Google Scholar
[11] Bharathan, J., Yang, Y., Appl. Phys. Lett. 72, 2660 (1998).Google Scholar
[12] Swalen, J. D., Allara, D. L., Andrade, J. D., Chandross, E. A., Garoff, S., Israelachvili, J., McCarthy, T. J., Murray, R., Pease, R. F., Rabolt, J. F., Wynne, K. J., Yu, H., Langmuir 3, 932 (1987).Google Scholar
[13] Dulcey, C. S., Georger, J. H., Krauthamer, V., Stenger, D. A., Fare, T. L. and Calvert, J. M., Science 252, 551 (1991).Google Scholar
[14] Kumar, A., Whitesides, G. M., Appl. Phys. Lett. 63, 2002 (1993).Google Scholar
[15] Brakke, K., Experimental Mathematics 1, 141 (1992).Google Scholar
[16] Darhuber, A. A., Troian, S. M., Miller, S. M., Wagner, S., J. Appl. Phys. (2000), in press.Google Scholar
[17] Gau, H., Herminghaus, S., Lenz, P. and Lipowsky, R., Science 283, 46 (1999).Google Scholar
[18] Orchard, S. E., Appl. Sci. Res. A11, 451 (1962).Google Scholar
[19] Ruijter, M. J. de, Chariot, M., Voue, M., Coninck, J. De, Langmuir 16, 2363 (2000); M. J. de Ruijter, J. De Coninck, G. Oshanin, Langmuir 15, 2209 (1999).Google Scholar
[20] Lamb, H., Hydrodynamics, Dover Publications (New York, 1945).Google Scholar
[21] Darhuber, A. A., Troian, S. M., Miller, S. M., Wagner, S., Proc. of the 3rd Int. Conf. on Modeling and Simulation of Microsystems (San Diego, March 2000), Computational Publications (Cambridge, 2000).Google Scholar
[22] Yakhnin, E. D., Chadov, A. V., Kolloidnyi Zhurnal 45, 1183 (1983).Google Scholar