Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T07:43:12.389Z Has data issue: false hasContentIssue false

Composite Nanocrystalline/Amorphous Thin Films for Particle Detector Applications

Published online by Cambridge University Press:  08 October 2015

Zvie Razieli
Affiliation:
Department of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, U.S.A.
Roger Rusack
Affiliation:
Department of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, U.S.A.
James Kakalios
Affiliation:
Department of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, U.S.A.
Get access

Abstract

Thin films of amorphous silicon with nanocrystalline silicon inclusions are fabricated using a dual plasma PECVD co-deposition system. Raman spectroscopy and X-ray diffraction confirmed the crystallinity of the embedded nanocrystals as well as their diameter, which is varied from 4.3 nm to 17.5 nm. The dark conductivity of the films is highly dependent on the crystal fraction, with a maximum room temperature conductivity found for a crystal concentration of 5.5%, well below the percolation threshold. Proton irradiation at energies of 217 MeV with a total fluence of 5 x1012 protons/cm2 caused no significant radiation damage. The enhancement of the conductivity, along with the absence of radiation damage suggests this material may be a candidate for use in the next generation of particle detectors in the Compact Muon Solenoid in the Large Hadron Collider at CERN.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

The RD50 Collaboration (M. Moll et. al.), Nucl. Instrum. Methods Phys. Res. A, 546, 99 (2005).CrossRefGoogle Scholar
The RD50 Collaboration (E. Fretwurst, et. al.) Nucl. Instrum. Methods Phys. Res. A 552, 7 (2005).CrossRefGoogle Scholar
Anelli, G., Commichau, S. C., Despeisse, M., Dissertori, G., Jarron, P., Miazza, C., Moraes, D., Shah, A., Viertel, G. M. and Wyrsch, N., Nucl. Instrum. Methods Phys. Res. A 518, 366 (2004); M. Despeisse, G. Anelli, P. Jarron, J. Kaplon, D. Moraes, A. Nardulli, F. Powolny and N. Wyrsch, IEEE Trans. Nuclear Sci., 55, 802 (2008).CrossRefGoogle Scholar
Kishimoto, N., Amekura, H., Kono, K. and Lee, C. G., J. Nucl. Matter. 258-263, 1908 (1998).CrossRefGoogle Scholar
Perez-Mendez, V., Kaplan, S. N., Cho, G., Fujieda, I., Qureshi, S., Ward, W. and Street, R. A., Nucl. Instrum. Methods Phys. Res. A, 273, 127 (1988).CrossRefGoogle Scholar
Kakalios, J., Kortshagen, U., Blackwell, C., Anderson, C., Adjallah, Y., Wienkes, L.R., Bodurtha, K., and Trask, J. in Amorphous and Polycrystalline Thin-Film Silicon Science and Technology (Mater. Res. Soc. Symp. Proc. 1321, Pittsburg, PA, (2011); L. R. Wienkes, C. Blackwell and J. Kakalios, Appl. Phys. Lett. 100, 72105(2012).Google Scholar
Adjallah, Y., Anderson, C., Kortshagen, U., Kakalios, J.. J. Appl. Phys. 107, 043704 (2010)CrossRefGoogle Scholar
Fields, J.D., McMurray, S., Wienkes, L.R., Trask, J., Anderson, C., Miller, L., Simonds, B.J., Kakalios, J., Kortshagen, U., Lusk, M.T., Collins, R.T., and Taylor, P.C., Solar Energy Materials & Solar Cells 129, 7 (2014).CrossRefGoogle Scholar
Mangolini, L., Thimsen, E., Kortshagen, U.. Nano Letters 5(4), (2005).CrossRefGoogle Scholar
Kortshagen, U.. J. Appl. Phys. D 42 (2009) 113001.CrossRefGoogle Scholar
Mangolini, L., Vac, J.. Sci. Technol. B 31, 20801 (2013).Google Scholar
Street, R.A. Hydrogenated Amorphous Silicon (Cambridge University Press, 1991).CrossRefGoogle Scholar
Anthony, R. and Kortshagen, U.R., Phys. Rev. B. 80, 115407 (2009).CrossRefGoogle Scholar
Lifshin, E. and Ebrary, I., X-Ray Characterization of Materials (Wiley-VCH; New York, 1999).CrossRefGoogle Scholar
Acosta, D (editor), CMS Physics Technical Design Report Volume I (CERN/LHCC 2006-001, 2006). Retrieved from https://cds.cern.ch/record/922757/files/lhcc-2006-001.pdf. P.51.Google Scholar
Kuendig, J., Goetz, M., Shah, A., Gerlach, L. and Fernandez, E., Solar Energy Materials and Solar Cells 79, 425 (2003).CrossRefGoogle Scholar