Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T21:23:45.502Z Has data issue: false hasContentIssue false

Complex defect behavior in Cu(In,Ga)Se2 solar cells with different gallium content

Published online by Cambridge University Press:  01 February 2011

Verena Mertens
Affiliation:
University of Oldenburg, Institute of Physics, Energy and Semiconductor Research Laboratory, D-26111 Oldenburg, Germany
Jürgen Parisi
Affiliation:
University of Oldenburg, Institute of Physics, Energy and Semiconductor Research Laboratory, D-26111 Oldenburg, Germany
Robert Kniese
Affiliation:
Center of Solar Energy and Hydrogen Research (ZSW), Industriestr. 6, D-70565 Stuttgart, Germany
Marc Köntges
Affiliation:
Institute of Solar Energy Research Hameln/Emmerthal (ISFH), Am Ohrberg 1, D-31860 Emmerthal, Germany
Rolf Reineke-Koch
Affiliation:
Institute of Solar Energy Research Hameln/Emmerthal (ISFH), Am Ohrberg 1, D-31860 Emmerthal, Germany
Get access

Abstract

We report on capacitance spectroscopy measurements on Cu(In,Ga)Se2 based solar cells where the gallium content was varied systematically. In all samples we found, depending on the measurement conditions, a minority carrier and/or a majority carrier signal. The minority trap can be attributed to the prominent donor-like state N1 or â already discussed in literature. However, the origin of the majority trap remains unclear.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ramathan, K., Contreras, M. A., Perkins, C. L., Asher, S., Hasoon, F. S., Keane, J., Young, D., Romero, M., Metzger, W., Noufi, R., Ward, J., Duda, A., Prog. Photovolt. Res. Appl. 11, 225 (2003).Google Scholar
2 Shafarman, W. N., Klenk, R., McCandles, B. E., J. Appl. Phys. 79, 7324 (1996).Google Scholar
3 Herberholz, R., Igalson, M., Schock, H. W., J. Appl. Phys. 83, 318 (1998).Google Scholar
4 Deibel, C., Dyakonov, V., Parisi, J., Appl. Phys. Lett. 82, 3559 (2003).Google Scholar
5 Powalla, M., Voorwinden, G., Dimmler, B., Proc. 14th European Photovoltaic Solar Energy Conf., Barcelona, edited by Ossenbrink, H. A., Helm, P., Ehmann, H., (H. S. Stephens & Associates, Bedford, UK, 1997), 12701273.Google Scholar
6 Losee, D. L., J. Appl. Phys. 46, 2204 (1975).Google Scholar
7 Lang, D. V., J. Appl. Phys. 45, 3023 (1974).Google Scholar
8 Istratov, A. A., Vyvenko, O. F., Hieslair, H., Weber, E. R., Meas. Sci. Technol. 9, 477 (1998).Google Scholar
9to be publishedGoogle Scholar
10 Mertens, V., Parisi, J., Köntges, M., Reineke-Koch, R., Proc. 19th European Photovoltaic Solar Energy Conf., Paris, edited by Bal, J.L. and Ossenbrink, H. (WIP, Munich, 2005).Google Scholar
11 Wada, T., Kohara, N., Negami, T., Nishitani, M., Jpn. J. Appl. Phys. 37, L71 (1998).Google Scholar