Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-28T16:09:24.350Z Has data issue: false hasContentIssue false

A Comparison of Linear Scaling Tight Binding Methods

Published online by Cambridge University Press:  10 February 2011

A. P. Horsfield
Affiliation:
Fujitsu European Centre for Information Technology, 2 Longwalk Road, Stockley Park, Uxbridge, UK
D. R. Bowler
Affiliation:
Physics Department, Keele University, Keele, Staffordshire, ST5 5BG, UK
C. M. Goringe
Affiliation:
Australian Key Centre for Microscopy and Microanalysis, Madsen Building (F09), University of Sydney, NSW 2006, Australia, e-mail: chris.goring@cheerful.com
D. G. Pettifor
Affiliation:
Oxford University, Department of Materials, Parks Road, Oxford, OX1 3PH
M. Aoki
Affiliation:
Department of Electrical and Electronic Engineering, Gifu University, 1–1 Yanagido, Gifu, 501–11, Japan
Get access

Abstract

Four linear scaling tight binding methods (the density matrix method, bond order potentials, the global density of states method, and the Fermi operator expansion) are described and compared to show relative computational efficiency for a given accuracy. The density matrix method proves to be most efficient for systems with narrow features in their energy gaps, while recursion based moments methods prove to be most efficient for metallic systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Li, X.-P., Nunes, R. W. and Vanderbilt, D., Phys. Rev. B 47, 10891 (1993)Google Scholar
2. Daw, M. S., Phys. Rev. B 47, 10895 (1993)Google Scholar
3. Galli, G. and Parrinello, M., Phys. Rev. Lett. 69, 3547 (1992)Google Scholar
4. Mauri, F., Galli, G. and Car, R., Phys. Rev. B 47, 9973 (1993)Google Scholar
5. Ordejon, P., Drabold, D., Grunbach, M. and Martin, R., Phys. Rev. B 48, 14646 (1993)Google Scholar
6. Pettifor, D. G., Phys. Rev. Lett. 63, 2480 (1989)Google Scholar
7. Aoki, M., Phys. Rev. Lett. 71, 3842 (1993)Google Scholar
8. Goedecker, S. and Colombo, L., Phys. Rev. Lett. 73, 122 (1994)Google Scholar
9. Kress, J. D. and Voter, A. F., Phys. Rev. B 53, 12733 (1996)Google Scholar
10. Horsfield, A. P., Mat. Sci. Engin. B 37, 219 (1996)Google Scholar
11. Stechel, E. B., Williams, A. R. and Feibelman, P. J., Phys. Rev. B 49, 10088 (1994)Google Scholar
12. McWeeney, R., Rev. Mod. Phys. 32, 335 (1960)Google Scholar
13. Goringe, C. M.. D. Phil Thesis, Oxford University (1995)Google Scholar
14. Fnedel, J., Adv. Phys. 3, 446 (1954)Google Scholar
15. Heine, V., Sol. St. Phys. 35, 1 (1980)Google Scholar
16. Ducastelle, F and Cyrot-Lackmann, F., J. Phys. Chem. Solids 31, 1295 (1970)Google Scholar
17. Haydock, R., Sol. St. Phys. 35, 216 (1980)Google Scholar
18. Foiles, S. M., Phys. Rev. B 48, 4287 (1993)Google Scholar
19. Hellmann, H., Einführung in die Quantumchemie (Leipzig: Franz Deutsche, 1937).Google Scholar
20. Feynman, R. P., Phys. Rev. 56, 340 (1939)Google Scholar
21. Horsfield, A. P., Bratkovsky, A. M., Fearn, M., Pettifor, D. G. and Aoki, M., Phys. Rev. B 53, 12964 (1996)Google Scholar
22. Goedecker, S. and Teter, M., Phys. Rev. B. 51, 9455 (1995)Google Scholar
23. Voter, A. F., Kress, J. D. and Silver, R. N., Phys. Rev. B. 53, 12733 (1996)Google Scholar
24. Gillan, M. J., J. Phys.: Condens. Matter 1, 689 (1989)Google Scholar
25. Horsfield, A. P. and Bratkovsky, A. M., Phys. Rev. B 53, 15381 (1996)Google Scholar
26. Xu, C. H., Wang, C. Z., Chan, C. T., and Ho, K. M., J. Phys.: Condens. Matter 4, 6047 (1992)Google Scholar
27. Goodwin, L., Skinner, A. J. and Pettifor, D. G., Europhys. Lett. 9, 701 (1989)Google Scholar
28. Horsfield, A.P., Godwin, P. D., Pettifor, D. G. and Sutton, A. P., Phys. Rev. B 54, 15773 (1996).Google Scholar
29. Bowler, D. R., Aoki, M., Goringe, C. M., Horsfield, A. P., Pettifor, D. G., Modelling and Simulation in Materials Science and Engineering 5, 199 (1997).Google Scholar
30. Kress, J. D. and Voter, A. F., Phys. Rev. B 52 8766 (1995)Google Scholar