Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-20T09:38:52.214Z Has data issue: false hasContentIssue false

Comparison of Lasing Characteristics of GaInNAs Quantum Dot Lasers and GaInNAs Quantum Well Lasers

Published online by Cambridge University Press:  01 February 2011

Chongyang Y. Liu
Affiliation:
LIUCY@NTU.EDU.SG, Nanyang Technological University, School of Electrical and Electronic Engineering, S1-B2C-20,, Nanyang Avenue, Singapore, Singapore, Singapore, 639798, Singapore
Soon Fatt Yoon
Affiliation:
esfyoon@ntu.edu.sg, Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore
Zhongzhe Z. Sun
Affiliation:
ezzsun.assoc@ntu.edu.sg, Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore
Get access

Abstract

Self-assembled GaInNAs/GaAsN single layer quantum dot (QD) lasers grown using solid source molecular beam epitaxy have been fabricated and characterized. Temperature-dependent measurements have been carried out on the GaInNAs QD lasers. High-temperature operation up to 65°C was demonstrated from an unbonded GaInNAs QD laser (50 × 1060 μm2), with high characteristic temperature (T0) of 79.4 K in the temperature range of 10-60°C. For comparison, temperature-dependent operation has also been studied on the GaInNAs single quantum well (SQW) lasers. Unlike the relation between the cavity length and T0 in GaInNAs SQW lasers, longer-cavity GaInNAs QD laser (50 × 1700 μm2) showed lower T0 of 65.1 K, which is presumably believed due to the nonuniformity of the GaInNAs QD layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kondow, M., Kitatani, T., Nakatsuka, S., Larson, M. C., Nakahara, K., Yazawa, Y., Okai, M., and Uomi, K., IEEE J. Sel. Top. Quantum Electron. 3, 719 (1997).10.1109/2944.640627Google Scholar
2. Tansu, N., Yeh, J. Y., and Mawst, L. J., IEEE J. Select. Topic Quantum Electron. 9, 1220 (2003).10.1109/JSTQE.2003.820911Google Scholar
3. Tansu, N. and Mawst, L. J., IEEE Photon. Technol. Lett., 14, 1052 (2002).10.1109/LPT.2002.1021966Google Scholar
4. Liu, C. Y., Qu, Y., Yuan, S., and Yoon, S. F., Appl. Phys. Lett. 85, 4594 (2004).10.1063/1.1824180Google Scholar
5. Wang, S.M., Wei, Y.Q., Wang, X.D., Zhao, Q.X., Sadeghi, M., and Larsson, A., J. Cryst. Growth 278, 734 (2005).10.1016/j.jcrysgro.2004.12.150Google Scholar
6. Sopanen, M., Xin, H. P., and Tu, C. W., Appl. Phys. Lett. 76, 994 (2000).10.1063/1.125917Google Scholar
7. Sun, Z. Z., Yoon, S. F., Yew, K. C., Bo, B. X., Du, A. Y., and Tung, C. H., Appl. Phys. Lett. 85, 1469 (2004).10.1063/1.1789236Google Scholar
8. Makino, S., Miyamoto, T., Kageyama, T., Nishiyama, N., Koyama, F., and Iga, K., J. Cryst. Growth 221, 561 (2000).10.1016/S0022-0248(00)00778-8Google Scholar
9. Miyamoto, T., Makino, S., Ikenaga, Y., Ohta, M., and Koyama, F., IEE Proc.-Optoelectron. 150, 59 (2003).10.1049/ip-opt:20030038Google Scholar
10. Gao, Q., Buda, M., Tan, H. H., and Jagadish, C., Electrochem. Solid-State Lett. 8, G57 (2005).10.1149/1.1848293Google Scholar
11. Arakawa, Y. and Sakaki, H., Appl. Phys. Lett. 40, 939 (1982).10.1063/1.92959Google Scholar
12. Huffaker, D. L., Park, G., Zou, Z., Shchekin, O. B., and Deppe, D. G., Appl. Phys. Lett. 73, 2564 (1998).10.1063/1.122534Google Scholar
13. Park, G., Huffaker, D. L., Zou, Z., Shckekin, O. B., and Deppe, D. G., IEEE Photon. Technol. Lett. 11, 301 (1999).10.1109/68.748215Google Scholar
14. Mukai, K., Nakata, Y., Otsubo, K., Sugawara, M., Yokoyama, N., and Ishikawa, H., IEEE J. Quantum Electron. 36, 472 (2000).10.1109/3.831025Google Scholar
15. Shchekin, O. B. and Deppe, D. G., IEEE Photon. Technol. Lett. 14, 1231 (2002).10.1109/LPT.2002.801597Google Scholar