Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-11T13:37:23.587Z Has data issue: false hasContentIssue false

Comparison of Different Reversed-Phase Packing Materials Based on Higher Organic Hybrid Particles

Published online by Cambridge University Press:  17 March 2011

Nicole L. Lawrence
Affiliation:
Waters Corporation, 34 Maple Street, Milford, MA, 01757
Kevin D. Wyndham
Affiliation:
Waters Corporation, 34 Maple Street, Milford, MA, 01757
Kenneth H. Glose
Affiliation:
Waters Corporation, 34 Maple Street, Milford, MA, 01757
Jim T. Cook
Affiliation:
Waters Corporation, 34 Maple Street, Milford, MA, 01757
Darryl W. Brousmiche
Affiliation:
Waters Corporation, 34 Maple Street, Milford, MA, 01757
Pamela C. Iraneta
Affiliation:
Waters Corporation, 34 Maple Street, Milford, MA, 01757
Bonnie A. Alden
Affiliation:
Waters Corporation, 34 Maple Street, Milford, MA, 01757
Cheryl A. Boissel
Affiliation:
Waters Corporation, 34 Maple Street, Milford, MA, 01757
Thomas H. Walter
Affiliation:
Waters Corporation, 34 Maple Street, Milford, MA, 01757
Get access

Abstract

As part of our ongoing exploration into the field of hybrid organic/inorganic particles as HPLC packing materials, we have recently evaluated the use of porous particles synthesized from the co-condensation of ethylene-bridged alkoxysilanes with tetraethoxysilane [1,2]. By employing 4-100 mol% of hybrid organic/inorganic groups (i.e., O1.5SiCH2CH2SiO1.5) to 96-0 mol% inorganic groups (i.e., SiO2), novel hybrid particles have been prepared and shown to be excellent materials for the preparation of efficient and chemically resilient reversed-phase packing materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wyndham, K.; O'Gara, J.; Walter, T.; Glose, K.; Lawrence, N.; Alden, B.; Izzo, G.; Hudalla, C.; Iraneta, P. Anal. Chem. 2003, 75, 6781. Wyndham, K.; O'Gara, J.; Walter, T.; Glose, K.; Arpin, N.; Hudalla, C.; Xu, Y.; Izzo, G. PSME-Preprints 2002, 87, 275.Google Scholar
2. O'Gara, J.; Wyndham, K. J. Liq. Chrom. Rel. Technol. 2006, 29, 1025.Google Scholar
3. Ding, J.; Hudalla, C. J.; Cook, J. T.; Walsh, D. P.; Boissel, C. E.; Iraneta, P. C.; O'Gara, J. E. Chem. Mater. 2004, 16, 670.Google Scholar
4 Neue, U. D.; Walter, T. H.; Alden, B. A.; Jiang, Z.; Fisk, R. P.; Cook, J. T.; Glose, K. H.; Carmody, J. L.; Grassi, J. M.; Cheng, Y.-F.; Lu, Z.; Crowley, R. Am. Lab. 1999, 31, 36. Walter, T. H.; Neue, U. D.; Alden, B.; Iraneta, P.; Gendreau, C.; Cheng, H.; Lu, Z.; Fisk, R.; O'Gara, J. Pharmac. Lab. 2000, 3, 1. Cheng, Y. G.; Lu, Z.; Neue, U. D. Rapid Commun. Mass Spec. 2001, 15(2), 141.Google Scholar
5. Hunter, R. J. Foundations of Colloid Science; Volume I; Oxford University Press: New York, 1991. Brinker, C. J.; Scherer, G. W. Sol-Gel Science; Academic Press, Inc: San Diego, 1990. Unger, K. K.; Becker, N.; Roumeliotis, P. J. Chromatogr. 1976, 125, 115.Google Scholar
6. Jiang, Z.; Fisk, R. P.; O'Gara, J. E.; Walter, T. H.; Wyndham, K. D. US Patent No. 6,686,035 B2Google Scholar
7. Buchel, G.; Grun, M.; Unger, K. K.; Matsumoto, A.; Tsutsumi, K. Supramol. Sci. 1998, 5, 253.Google Scholar
8. Gerhartz, W., Ed. Ullmann's Encyclopedia of Industrial Chemistry; VCH Publishers: New York, 1988; Vol. B2: Unit Operations I.Google Scholar
9. Berendsen, G. E.; Galan, L. J. Liq. Chromatogr. 1978, 1, 403.Google Scholar
10. Neue, U. D. HPLC Columns: Theory, Technology, and Practice; Wiley-VCH: New York, 1997.Google Scholar
11. Mendez, A; Bosch, E; Roses, M; Neue, U.D. J. Chromatogr., A 2003, 986, 3344; Neue, U.D.; Phoebe, C.H.; Tran, K.; Cheng, Y.F.; Lu, Z. J. Chromatogr., A 2001, 925, 49.Google Scholar