Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-20T21:36:02.858Z Has data issue: false hasContentIssue false

A Comparison of CH4:H2 and C2H6:H2 Morie of GaAs

Published online by Cambridge University Press:  21 February 2011

V. J. Law
Affiliation:
Cavendish Laboratory, Madingley Rd, Cambridge, CB3 OHE, U.K.
G. A. C. Jones
Affiliation:
Cavendish Laboratory, Madingley Rd, Cambridge, CB3 OHE, U.K.
M. Tewordt
Affiliation:
Cavendish Laboratory, Madingley Rd, Cambridge, CB3 OHE, U.K.
H. Royal
Affiliation:
Plasma Technology, Yatton, Bristol, BS19 4AP, U.K.
Get access

Abstract

A comparative study is made of CH4:H2 and CH3−CH3:H2 metal-organic reactive ion etching of molecular beam epitaxially grown GaAs. The etch rates are measured to be proportional to both CH4 and CH3−CH3 concentrations, with empirically determined order of reactions at 1.1 W.cm−2 of, 0.57 ± 0.1 and 0.32 ± 0.01. Approximately twice the number of CH4 molecules are required to produce the equivalent etch rate as CH3−CH3 molecules. The measured apparent activation energies are low, Ea ≤ 6 meV, and GaAs area loading effects are the same. These results indicate that methyl radicals are predominately responsible for the reaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Niggebrugge, U., Klug, M & Garus, G, GaAs and related comnpounds (Inst. Phys. Conf. Ser. 79, Karuizawa, Japan.1985) pp. 367–372.Google Scholar
[2] Cheung, R., Thoms, S., Beaumont, S. P., Doughty, G., J.Law, V., & Wilkinson, C. D. W., Electron. Lett. 23, 857 (1987).Google Scholar
[3] Henry, L., Voudry, C., & Grandjoux, P., Electron. Lett. 23, 1253 (1987).Google Scholar
[4] Thoms, S., McIntyre, I., Beaumont, S. P., Al-Mudares, M., Cheung, R., & Wilkinson, C. D. W., J. Vac. Sci. Technol. B6, 127 (1988).Google Scholar
[5] Law, V. J., & Jones, G. A. C., Semicond. Sci. Technol. 4, 833 (1989).Google Scholar
[6] Matsui, T., Sugimoto, H., Ohishi, T., Ogata, H., Electron. Lett. 24, 798 (1988).Google Scholar
[7] Pearton, S. J., Chakrabarti, U. K., & Hobson, W. S., J. Appl. Phys. 66. 2061 (1989).Google Scholar
[8] Andieh, E., Adesida, I., Brock, T., Caneau, C., & Keramides, . J. Vac. Sci. Technol. B7 (6), 1841 (1989).Google Scholar
[9] Hayes, T. R., Dreisbach, M. A., Thomas, P. M., Dautremont-Smith, W. C., & Heimbrook, L. A.. J. Vac. Sci.Technol. B7, 113 (1989).Google Scholar
[10] Hayes, T. R., Dautremont-Smith, W. C., Luftman, H. S., & Lee, J. W.. Appl. Phys. Lett. 55, 56 (1989).Google Scholar
[11] Collot, P., & Gaonach, C.. Semicond. Sci. Technol. 4, 237 (1990).Google Scholar
[12] Law, V. J., Jones, G. A. C., Peacock, D. C., Ritchie, D., Frost, J. E. F.. J. Vac. Sci. Technol. B7 (6), 1479 (1989).Google Scholar
[13] Pearton, S. J., & Hobson, W. S.. J. Appl. Phys. 66, 5009 (1989).Google Scholar
[14] Long, L. H., & Sackman, J. F.. Trans. Far. Soc. 54, 1997 (1958).Google Scholar
[15] Jacko, M. G., & Price, S. J. W.. Can. J. Chem. 42, 1198 (1964).Google Scholar
[16] Law, V. J., Jones, G. A. C., Patel, N. K., & Tewordt, M.. Tc be published. Proc. Int. Conf. ME89Cambridge. (April. North-Holland. Amsterdam 1990).Google Scholar
[17] Law, V. J., Jones, G. A. C., & Tewordt, M.. Semicond. Sci. Technol. 5, 281 (1990).Google Scholar
[18] Chapmam, B. N., & Minkiewicz, V. J.. J. Vac. Sci. Technol. 15, 329 (1978).Google Scholar
[19] Pearton, S. J., & Hobson, W. S.. J. Appl. Phys. 66, 5018 (1989).Google Scholar
[20] Carter, A. J., Thomas, B., Morgan, D. V., Bhardwaj, J. K., McQuarrie, A. M., Stephens, M. A.. IEE Proc. 136 ptJ.1 (1989).Google Scholar