Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-28T08:05:43.254Z Has data issue: false hasContentIssue false

Comparison Between the Phase Transition of Physically Confined Cyclohexane and 1-Decanol inside Nano Porous Silica

Published online by Cambridge University Press:  21 February 2012

Hillary C. Bauer
Affiliation:
Department of Physics and Astronomy, Union College, Schenectady, NY 12308, U.S.A.
Alexandrea D. Safiq
Affiliation:
Department of Physics and Astronomy, Union College, Schenectady, NY 12308, U.S.A.
Jargalsaikhan Dulmaa
Affiliation:
Department of Physics and Astronomy, Union College, Schenectady, NY 12308, U.S.A.
Amer S. Khraisat
Affiliation:
Department of Physics and Astronomy, Union College, Schenectady, NY 12308, U.S.A.
Samuel Amanuel
Affiliation:
Department of Physics and Astronomy, Union College, Schenectady, NY 12308, U.S.A.
Get access

Abstract

The thickness of non-freezing interfacial 1-decanol molecules has been estimated to be 1.44 ± 0.07 nm. This is smaller than what is estimated for cyclohexane, 2.25 ± 0.14nm. Furthermore, these interfacial molecules have higher density than corresponding bulk cyclohexane and 1-decanol, respectively. However, the change in density of the interfacial molecules is more significant in the case of cyclohexane than 1-decanol. This suggests that the cyclohexane molecules near the walls of the pore are more tightly packed than 1-decanol molecules. Presumably, this is due to the difference in size and shape of the molecules. Cyclohexane, a more spherical molecule, can easily be packed in smaller pores than the longer 1-decanol.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Alcoutlabi, M. and McKenna, G.B., J. Phys.: Condens. Matter. 17, R461R524 (2005).Google Scholar
2. Christenson, H.K., J. Phys.: Condens. Matter. 13, R95R133 (2001).Google Scholar
3. Alba-Simionesco, C., Coasne, B., Dosseh, G., Dudziak, G., Gubbins, K.E., Radhakrishnan, R., and Sliwinska-Bartkowiak, M., J. Phys.: Condens. Matter. 18, R15R68 (2006).Google Scholar
4. Warnock, J., Awschalom, D.D., and Shafer, M.W., Phys. Rev. Lett. 57, 1753–56 (1986).Google Scholar
5. Awschalom, D.D. and Warnock, J., Phys. Rev. B. 35, 6779–85 (1987).Google Scholar
6. Molz, E., Wong, APY, Chan, MHW, and Beamish, J.R., Phys. Rev. B. 48, 5741–50 (1993).Google Scholar
7. Awschalom, D.D., Warnock, J., in: Molecular Dynamics in Restricted Geometries, edited by Klafter, J., and Drake, J.M. (New York: Wiley 1989) pp 350–69.Google Scholar
8. Unruh, K.M., Huber, T.E., Huber, C.A., Phys. Rev. B. 48, 9021–27 (1993).Google Scholar
9. Sun, J. and Simon, S.L., Thermochimic Acta. 463, 3240 (2007).Google Scholar
10. Lai, S.L., Guo, J.Y., Petrova, V., Ramanath, G., and Allen, L.H., Phys. Rev. Lett. 77, 99102 (1996).Google Scholar
11. Zhang, M., Efremov, M.Y., Schiettekatte, F., Olson, E.A., Kwan, A.T., Lai, S.L., Wisleder, T., Greene, J.E., and Allen, L.H., Phys. Rev. B. 62, 10548–56 (2000).Google Scholar
12. Jackson, C.L. and McKenna, G.B., , G.B. J. Chem. Phys. 93, 9002–11 (1990).Google Scholar
13. Amanuel, S., Bauer, H., Bonventre, P, and Lasher, D., J. Phys. Chem. C. 113, 18983–86 (2009).Google Scholar
14. Mu, R. and Malhotra, V.M., Phys. Rev. B. 44, 42964303 (1991).Google Scholar
15. Amanuel, S., Malhotra, V.M., Mat. Res. Soc. Symp. Proc. 543, 4550 (1999).Google Scholar
16. Mu, R., Xue, Y., Henderson, D.O., and Frazier, D.O, Phys. Rev. B. 53, 6041–47 (1996).Google Scholar
17. Khokhlov, A., Valiullin, R., Karger, J., Steinbach, F., Feldhoff, A., New J. Phys. 9, 272–1 (2007).Google Scholar
18. Schmidt, M., Kusche, R., Kronumuller, W., Issendorff, B.V., and Haberlan, H., Phys. Rev. Lett. 79, 99102 (1997).Google Scholar
19. Goldstein, A.N., Echer, C.M., and Alivisatos, A.P., Sci. 256, 1425–27 (1992).Google Scholar
20. Paolone, A., Palumbo, O., Rispoli, P., Cantelli, R., Autrey, T., and Karkamkar, A., J. Phys. Chem. C. 113, 10319–21 (2009).Google Scholar
21. Aksnes, D.W. and Gjerdåker, L.., J. Mol. Struct. 475, 2734 (1999).Google Scholar
22. Dimeo, R. M., Neumann, D. A., Glanville, Y., and Minor, D. B., Phys. Rev. B. 66, 104201–5 (2002).Google Scholar