Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-23T07:48:54.733Z Has data issue: false hasContentIssue false

Comparison and Reproducibility of H-Passivation of Si(100) with HF in Methanol, Ethanol, Isopropanol and Water by IBA, TMAFM, and FTIR'

Published online by Cambridge University Press:  10 February 2011

V. Atluri
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504. Presently at Intel Corporation., Chandler, AZ 85226.
N. Herbots
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504.
D. Dagel
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504.
H. Jacobsson
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504. Presently at Ericsson Research Center, Molndal, Sweden.
M. Johnson
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504.
R. Carpio
Affiliation:
SEMATECH, Austin, TX 78741-6499.
B. Fowler
Affiliation:
SEMATECH, Austin, TX 78741-6499.
Get access

Abstract

Three different HF:alcohol solutions are investigated to etch native SiO2 and passivate Si(100) surfaces with H which can the be desorbed at low temperature (T < 600°C). The resulting passivated Si(100) surfaces are compared using as a reference Si(100) passivated by a standard aqueous HF: solution (1:98 parts of HF: H2O). After a modified RCA cleaning, Si(100) etched by HF:Methanol, HF:IPA, or HF:Ethanol, is characterized by Ion Beam Analysis (IBA), Tapping Mode Atomic Force Microscope (TMAFM), and Fourier Transform Infrared Spectroscopy (FTIR). The absolute coverage of O and C is measured by nuclear reaction analysis (NRA) combined with ion channeling at 3.05 MeV for O and 4.265 MeV for C. Hydrogen is measured via the elastic recoil detection (ERD) of 4He2+ at 2.8 MeV.

Compared to aqueous HF, HF:alcohol passivates Si(100) leaving a lower O residue by an average factor of 0.62 and a similar C residue. H coverage is higher by an average factor of 1.43. Surface coverages are found to be reproducible in average by 1.4 × 1014 atoms/cm2 for C, and by 1.25 × 1014 atoms/cm2 for O when measured by IBA on samples identically processed. H coverage is reproducible within 5.5% when measured by ERD.

Selective area analysis by TMAFM shows that an increasing number of particulates is responsible for the apparent increase in root-mean -square (rms) surface roughness when the rms is measured over a whole image. Taking this effect into account, all passivated surfaces exhibit similar roughness when compared to the original Si(100) surface with little difference between alcohols and with the reference aqueous HF solution.

FTIR in the attenuation total reflection (ATR) mode detected SiHx species mostly as a dihydride. Both IBA and FTIR detected significant levels of oxygen on surfaces passivated HF in alcohol and aqueous HF. This indicates that while Si(100) exhibits more H when passivated with HF in alcohol and can be desorbed at lower temperature than when treated with aqueous HF, H is not bonded to Si only but likely bonds into a more complex surface termination, such as SiOH.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Supported by NSF grant # DMR-9200055 for Research Education for Undergraduate (REU).

References

REFERENCES

1. Kern, W. in Handbook of Semiconductor Wafer Cleaning Technology, edited by Kern, W. (Noyes Publications, Park Ridge, New Jersey, 1993), pp. 367.Google Scholar
2. Liehr, M. in Chemical Surface Preparation, Passivation and Cleaning for Semiconductor Growth and Processing, edited by Nemanich, R. J., Helms, C. R., Hirose, M., and Rubloff, G. W (Mater. Res. Soc. Proc. 259, Pittsburgh, PA, 1992) pp. 318.Google Scholar
3. Galewski, C., Lou, J. C., and Oldham, W. G., IEEE Transactions on Semiconductor Manufacturing, 3 (3), 93 (1990).10.1109/66.56566CrossRefGoogle Scholar
4. Grunthaner, P. J., Grunthaner, F. J., Fathauer, R. W., Lin, T. L., Hecht, M. H., Bell, L. D., Kaiser, W.J., Schowengerdt, F. D., and Mazur, J. H., Thin Solid Films 183, 197212 (1989).10.1016/0040-6090(89)90445-8CrossRefGoogle Scholar
5. Kern, W., J. Electrochem. Soc. 137 (6), 1887 (1990).10.1149/1.2086825CrossRefGoogle Scholar
6. Kinosky, D., Anthony, B., Hsu, T., Qian, R., Irby, J., Banerjee, S., and Tasch, A., in Cleaning Technology in Semiconductor Device Manufacturing, edited by Ruzyllo, J. and Novak, R. A (Electrochem. Soc. Proc. 92–12, Pennington, NJ, 1992) pp. 445452..Google Scholar
7. Higashi, G. S., Chabal, Y. J., Trucks, G. W., and Raghavachari, K., Appl. Phys. Lett. 56 (7), 656658 (1990).CrossRefGoogle Scholar
8. Watanabe, S., Nakayama, N., and Ito, T., Appl. Phys. Lett. 59 (12), 14581460 (1991).10.1063/1.105287CrossRefGoogle Scholar
9. Trucks, G. W., Raghavachari, K., Higashi, G. S., and Chabal, Y. J., Phys. Rev. Lett. 65 (4), 504507 (1990).10.1103/PhysRevLett.65.504CrossRefGoogle Scholar
10. Higashi, G. S. and Chabal, Y. J. in Handbook of Semiconductor Wafer Cleaning Technology, edited by Kern, W. (Noyes Publications, Park Ridge, New Jersey, 1993), pp. 433496.Google Scholar
11. Chabal, Y. J. in Chemical Surface Preparation, Passivation and Cleaning for Semiconductor Growth and Processing, edited by Nemanich, R. J., Helms, C. R., Hirose, M., and Rubloff, G. W (Mater. Res. Soc. Proc. 259, Pittsburgh, PA, 1992) pp. 349373.Google Scholar
12. Fenner, D. B., Biegelsen, D. K., and Bringans, R. D., J. Appl. Phys. 66 (1), 419424 (1989).10.1063/1.343839CrossRefGoogle Scholar
13. Garrido, B., Gessinn, F., Prom, J. L., Morante, J. R., Samitier, J., and Sarrabayrouse, G. in Chemical Surface Preparation, Passivation and Cleaning for Semiconductor Growth and Processing, edited by Nemanich, R. J., Helms, C. R., Hirose, M., and Rubloff, G. W (Mater. Res. Soc. Proc. 259, Pittsburgh, PA, 1992) pp. 119124.Google Scholar
14. Lide, D. R., ed, Handbook of Chem. and Phys, 77th ed. (CRC Press, New York, 1996), p. 3 Google Scholar
15. Kinosky, D., Qian, R., Mahajan, A., Thomas, S., Mungula, P., Fretwell, J., et al. in Surface Chemical Cleaning and Passivation for Semiconductor Processing, eds by Higashi, G. S., Irene, E. A., and Ohmi, T. (Mater. Res. Soc. Proc. 315, Pittsburgh, PA, 1993) pp. 7984.Google Scholar
16. Atluri, V., Herbots, N., et al. Nucl. Instr. Meth. B, 118, 1L44 (1996).10.1016/0168-583X(95)01490-XCrossRefGoogle Scholar
17. Burrows, V. A., Solid-State Electronics 35 (3), pp. 231238 (1992).10.1016/0038-1101(92)90227-4CrossRefGoogle Scholar
18. Prater, C. B., Strausser, Y. E., Inst. Phys. Conf. Ser. 135 (IOP Publ. Ltd.), p. 69(1994)Google Scholar
19. Swift, R. and Wilson, F., Motorola Inc., Semiconductor Products Sector, Phoenix, AZ.Google Scholar
20. All chemicals are from General Chemicals, Pittsburgh, CA. But pharmaceutical reagent grade ethanol, manufactured by EM Science Corp. is distributed by Alameda Scientific, Phoenix AZ.Google Scholar
21. Kern, W. and Puotinen, D.A., RCA Review 31, 187233 (1970).Google Scholar
22. Kern, W., Semicond. Int. 7 (4), 94 (1984).Google Scholar
23. Fluoroware Corp., Chaska, MN. fabricated the Teflon™ carrier.Google Scholar
24. Robinson, M., Lawrence Semiconductor Research Corp, provided access to TMAFM.Google Scholar
25. Carpio, R. A, SEMATECH, Austin, TX, performed the FTIR analysis.Google Scholar
26. Carpio, R. A., private communication.Google Scholar
27. Atluri, V., Herbots, N., Bhagvat, S., Whaley, S., Carpio, R., Fowler, B. W. ULSI Science & Technology, eds Middleworth, E. M., Massoud, H. (Electrochem. Soc. Proc. 95 (5), Pennington, NJ, 1995) pp. 116128.Google Scholar
28. Atluri, V., PhD dissertation, University of Arizona, 1997 (under preparation).Google Scholar
29. Brierley, P. R., PIKE Technologies, Madison, WI., designed the fixture.Google Scholar
30. Carpio, R. A., Fowler, B. W., Atluri, V., Herbots, N., and Brierley, P. R. in Cleaning Technology in Semiconductor Device Manufacturing, Eds Novak, R. and Ruzyllo, J. (Electrochem. Soc. Proc. ECS 95–20, Pennington, NJ, 1996) pp. 379386.Google Scholar
31. Martin, J. S., Barnett, J. M., Grothe, P. A., Carpio, R. A., Fowler, B. W., Atluri, V., and Herbots, N. in Cleaning Technology in Semiconductor Device Manufacturing, edited by Novak, R. and Ruzyllo, J. (Electrochem. Soc. Proc.ECS 95–20, Pennington, NJ, 1996) pp. 126133.Google Scholar
32. Vancauwenberghe, O., Hellman, O.C., Herbots, N. et al. Mater. Sci. Eng B 12, 97 (1992).10.1016/0921-5107(92)90266-CCrossRefGoogle Scholar
33. Herbots, N., Hellman, O.C., Vancauwenberghe, O., Ye, P., Wang, X., Current Topics in Ion Chemistry and Physics, edited by Rabalais, J. Wayne (John Wiley & Sons, New York, New York 1994), pp. 386480.Google Scholar
34. Jacobsson, H., Ye, P., Herbots, N., et al. Nucl. Instr. Meth. B, 118, 633 (1996).10.1016/0168-583X(95)01463-2CrossRefGoogle Scholar
35. Jacobsson, H., Xiang, J., Herbots, N., Whaley, S., Ye, P., J. Appl. Phys. (1996).Google Scholar
36. Atluri, V., Herbots, N., Carpio, R., Fowler, B., to be sub. to Appl. Phys. Lett. (1997).Google Scholar
37. Scmidt, H.F., Terrlinck, I., Storms, W., Bender, H., M.M. Heyns ECS 95–20, 480 (1996).Google Scholar