Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-21T19:03:52.350Z Has data issue: false hasContentIssue false

Comparative Theoretical Study of Amorphous and Crystalline Silicon Clusters

Published online by Cambridge University Press:  15 February 2011

M. Lannoo
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, Département Institut Supérieur d'Electronique du Nord, BP 69, 59652 Villeneuve d'Ascq Cedex, France, gal@isen.fr
C. Delerue
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, Département Institut Supérieur d'Electronique du Nord, BP 69, 59652 Villeneuve d'Ascq Cedex, France, gal@isen.fr
G. Allan
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, Département Institut Supérieur d'Electronique du Nord, BP 69, 59652 Villeneuve d'Ascq Cedex, France, gal@isen.fr
Get access

Abstract

The occurence of confinement effects for amorphous Si and Si:H clusters is investigated theoretically in an empirical tight binding treatment. The results show that one must consider three categories of states: strongly localized, weakly localized and delocalized. In all cases a substantial blue shift with reduction in size is obtained, of comparable magnitude for amorphous a-Si:H and crystalline clusters. These results are compared with available experimental data

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2Halimaoui, A., Oules, C., Bomchil, G., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., and Muller, R., Appl. Phys. Lett. 59, 304 (1991).Google Scholar
3Bsiesy, A., Vial, J.C., Gaspard, F., Hérino, R., Ligeon, M., Muller, F., Romestain, R., Wasiela, A., Maimaoui, A., and Bomchil, G., Surface Science 254, 195 (1991).Google Scholar
4Lehmann, V. and Gosele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
5Street, R.A., Adv. Phys. 30, 593 (1981).Google Scholar
6Bustarret, E., Ligeon, M., and Ortega, L., Solid State Comm. 83, 461 (1991).Google Scholar
7Bustarret, E., Sauvain, E., Ligeon, M., and Rosenbauer, M., Thin Solid Films E-MRS 95.Google Scholar
8Wehrspohn, R.B., Chazalviel, J.-N., Ozanam, F., and Solomon, I., Phys. Rev. Lett. 77, 1885 (1996).Google Scholar
9Estes, M.J., Hirsch, L.R., Wichart, S., and Moddel, G. (To be published).Google Scholar
10Lazarouk, S., Katsuba, S., Kazuchits, N., De Cesare, G., La Monica, S., Maiello, G., Proverbio, E., and Ferrari, A., “Microcry stalline and Nanocrystalline Semiconductors”, Brus, L., Hirose, M., Collins, R.W., Koch, F., Tsai, C.C. Eds. (Mat. Res. Soc. Proc. 358, Pittsburgh, PA, 1995)Google Scholar
11Nguyen, H.V., Lu, Y., Kim, S., Wakagi, M. and Collins, R.W., Phys. Rev. Lett. 74, 3880 (1995).Google Scholar
12Lu, Z.H., Lockwood, D.J. and Baribeau, J.-M., Nature 378, 258 (1995);Google Scholar
Lockwood, D.J., Lu, Z.H., and Baribeau, J.-M., Phys. Rev. Lett. 76, 539 (1996).Google Scholar
13Wooten, F., Winer, K., and Weaire, D., Phys. Rev. Lett. 54, 1392 (1985);Google Scholar
Wooten, F., and Weaire, D., Solid State Phys. 40, 1 (1987).Google Scholar
14Djordjevic, B.R., Thorpe, M.F., and Wooten, F., Physical Review B 52, 5685 (1995).Google Scholar
15Keating, P.N., Phys. Rev. 145, 637 (1966).Google Scholar
16Vogl, P., Hjalmarson, H.P., and Dow, J.D., J. Phys. Chem. Sol. 44, 365 (1983).Google Scholar
17Harrison, W.A., Electronic Structure and the Properties of Solids (Freeman, San Francisco, 1980).Google Scholar
18Proot, J.-P., Delerue, C. and Allan, G., Appl. Phys. Lett. 61, 1948 (1992)Google Scholar
19Ziman, J.M., Models of disorder, Cambridge University Press, p. 481 (1979)Google Scholar
20Estes, M.J., and Moddel, G., Appl. Phys. Lett. 68, 1814 (1996).Google Scholar
21Allan, G., Delerue, C., and Lannoo, M., Phys. Rev. Lett. 76, 3038 (1996).Google Scholar