Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-08T22:42:45.881Z Has data issue: false hasContentIssue false

A Comparative Study of the Photoablation of Polyimide-Doped Poly(Tetrafluoroethylene) at 308 NM and 248 NM

Published online by Cambridge University Press:  01 January 1992

G. C. D'couto
Affiliation:
Department of Chemical Engineering, Clarkson University, Potsdam, NY 13699
S. V. Babu
Affiliation:
Department of Chemical Engineering, Clarkson University, Potsdam, NY 13699
F. D. Egitto
Affiliation:
IBMCorporation, Technology Products, Endicott, NY 13760
C. R. Davis
Affiliation:
IBMCorporation, Technology Products, Endicott, NY 13760
Get access

Abstract

Experimental data on the 248 nm and 308 nm wavelength excimer laser ablation of poly(tetrafluoroethylene) (PTFE) doped with polyimide (PI) are reported for a range of fluences and dopant concentrations. Threshold fluences were determined and correlated with the dopant concentrations. The threshold fluences and the limiting etch rates measured at high fluences decreased with increasing dopant concentration and there is a minimum absorption coefficient below which there is no ablation at both the wavelengths. The etch rates have been modeled using a two parameter Arrhenius thermal model to describe the etching process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schmitt, G.P., Appelt, B.K., and Gotro, J.T., Principles of Electronic Packaging Seraphim, D.P., Lasky, R.C., and Li, C-Y., Eds., (McGraw-Hill, New York, 1989).Google Scholar
2. Seraphim, D.P., Barr, D.E., Chen, W.T., Schmitt, G.P., and Tummala, R.R., in Microelectronics Packaging Handbook, edited by Tummala, R.R. and Rymaszewski, E.J. (Van Nostrand Reinhold, New York, 1989).Google Scholar
3. Srinivasan, V., Smrtic, M.A. and Babu, S.V., J. Appl. Phys., 59, 3861 (1986).Google Scholar
4. Linsker, R., Srinivasan, R., Wynne, J. J. and Alonso, D. R., Laser Surg. Med., 4, 201 (1984).Google Scholar
5. Sutcliffe, E. and Srinivasan, R., J. Appl. Phys. 60, 3315 (1986).Google Scholar
6. Dyer, P.E., Oldershaw, G.A., and Schudel, D., Appl. Phys. B51, 314 (1990).Google Scholar
7. Kidper, S. and Stuke, M., Appl. Phys., B44, 199 (1987); Appl. Phys. Lett., 54, 4 (1989).Google Scholar
8. Basting, D., Sowada, U., Voss, F., and Oesterlin, P., Proc. SPIE, 1412, 80 (1991).Google Scholar
9. Davis, C.R., Egitto, F.D., and Buchwalter, S.L., Appl. Phys., B54, 227 (1992); Egitto, F. D. and Davis, C. R., Appl. Phys. B (in press).Google Scholar
10. Chuang, T.I., Hiraoka, H., and Modl, A., Appl. Phys., A45, 277 (1988).Google Scholar
11. Srinivasan, R. and Braren, B., Appl. Phys., A45, 289 (1988).Google Scholar
12. Babu, S.V., D'Couto, G.C. and Egitto, F.D., J. Appl. Phys., 72, 692 (1992).Google Scholar
13. H, H.. Jellinek, G. and Srinivasan, R., J. Phys. Chem., 88, 3048 (1984).Google Scholar
14. Furzikov, N. P., Appl. Phys. Lett., 56, 1638 (1990).Google Scholar
15. D'Couto, G. C., Babu, S. V., and Egitto, F. D., ‘Thermal model describing the etch rate of polyetheretherketone, polyimide, and polytetrafluoroethylene’, manuscript in preparation.Google Scholar