Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T01:37:41.356Z Has data issue: false hasContentIssue false

Comparative Study of Simultaneous Implant Activation and Borophosphosilicate Glass (BPSG) Reflow During Rapid Thermal Processing (RTP) and Furnace Annealing on Complex Topographies

Published online by Cambridge University Press:  22 February 2011

Randhir P. S. Thakur
Affiliation:
Micron Semiconductor, Inc., 2805 E. Columbia Road, Boise, ID 83706–9698
Valerie Ward
Affiliation:
Micron Semiconductor, Inc., 2805 E. Columbia Road, Boise, ID 83706–9698
Annette Martin
Affiliation:
Micron Semiconductor, Inc., 2805 E. Columbia Road, Boise, ID 83706–9698
Get access

Abstract

Borophosphosilicate glass (BPSG) is an essential insulating material used to modify thecomplex topography of highly dense, next generation dynamic random access memory (DRAM)devices. The shallow junctions in 16 and 64 Meg DRAMs can only be maintained by severely restricting the time, temperature, and atmosphere of all thermal process steps following the junction implant.

In this paper we present the results of rapid thermal process (RTP) assisted reflow of BPSG over complex topographies and compare the results of RTP to furnace reflow in both dry and wet ambients. We also compare the out-diffusion of boron and phosphorous from BPSG films during the RTP and furnace reflow. We found an optimum RTP cycle that completely removes voids in the vicinity of overhang geometries and provides sufficient activation of the underlying dopants (as compared to a furnace reflow and activation cycle). In this study we used the results of boron and phosphorous profile redistribution, underlying dopant activation, and the amount of reflow to compare RTP and furnace processing techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kern, W. and Schnable, G. L., RCA Rev., 43, 423 (1982).Google Scholar
2. Kern, W. and Smeltzer, R. K., Solid State Technol., 28 (6), 171 (1985).Google Scholar
3. Levy, R. A. and Nassau, K., J. Electrochem. Soc., 133 (7), 1417 (1986).Google Scholar
4. Levy, R. A. and Nassau, K., Solid State Technol., 133, 123 (1986).Google Scholar
5. Foster, T., Hoeye, G. and Goldman, J., J. Electrochem. Soc., 132 (2), 505 (1985).Google Scholar
6. Levy, R. A., Gallagher, P. K. and Schrey, F., J. Electrochem. Soc., 134, 430 (1987).Google Scholar
7. Hurley, K. H., Solid State Technol., 104 (1987).Google Scholar
8. Schnable, G. L., Fisher, A. W. and Shaw, J. M., J. Electrochem. Soc., 137 (2), 3973 (1990).Google Scholar
9. O'Meara, D. L. and Hochberg, A. K., Mat. Res. Soc. Symp. Proc., 204, 533 (1991).Google Scholar
10. Mayumi, S. and Ueda, S., Jpn. J. Appl. Phys., 29, 645 (1990).Google Scholar
11. Madden, M., Cox, J. N., Fruechting, B., and Matteau, J., Solid State Technol., 32 (8), 53 (1989).Google Scholar
12. Singh, R., J. Appl. Phys., 63, R59 (1988).Google Scholar
13. Thakur, R. P. S., Singh, R., Nelson, A. J., Ullal, H. S., Chaudhuri, J. and Gondhalekar, V., J. Appl. Phys., 69 (1), 367 (1991).Google Scholar
14. Kern, W., Kurylo, W. A. and Tino, C. J., RCA Rev., 46, 117 (1985).Google Scholar
15. Becker, F. S., Pawlik, D., Schafer, H. and Standigl, G., J. Vac. Sci. Technol. B, 4 (3), 732 (1986).Google Scholar
16. Wilson, S. R., Paulson, W. M., and Gregory, R. B.. Solid State Technol., 28 (6), 185 (1985).Google Scholar
17. Jensen, K. and Kern, W. in Vossen, J. L. and Kern, W. (eds.), Thin Film Processes II. Chapter III, Academic Press, New York, 283 (1991).Google Scholar
18. Reif, R. and Kern, W., in Vossen, J. L. and Kem, W. (eds.), Thin Film Processes II. Chapter IV, Academic Press, New York, 525 (1991).Google Scholar
19. Kern, W. and Hartman, J., Thin Solid Films, 206, 64 (1991).Google Scholar
20. Thakur, R. P. S., Gonzalez, F., Hawthorne, R., Ward, V., and Jeng, N. (unpublished).Google Scholar
21. Williams, D. S. and Dein, E. A., J. Electrochem. Soc., 134, 657 (1987).Google Scholar