Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T07:06:48.684Z Has data issue: false hasContentIssue false

Comparative Study of Hydrogen Diffusion in Hot-Wire and Glow-Discharge-Deposited a-Si:H

Published online by Cambridge University Press:  15 February 2011

J. Shinar
Affiliation:
Ames Laboratory -USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
R. Shinar
Affiliation:
Microelectronics Research Center, Iowa State University, Ames, IA 50011 Microanalytical Instrumentation Center, Iowa State University, Ames, IA 50011
K. E. Junge
Affiliation:
Ames Laboratory -USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
E. Iwaniczko
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
A. H. Mahan
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
R. S. Crandall
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
H. M. Branz
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
Get access

Abstract

Long-range atomic H motion in hot-wire deposited (HW) a-Si:H is compared directly to that in glow-discharge deposited (GD) a-Si:H by monitoring the deuterium secondary ion mass spectrometry (DSLMS) profiles in [GD a-Si:H]/[GD a-Si:(H,D)]/[HW a-Si:H] multilayers vs annealing temperature and time. While the profiles in the GD layer are in excellent agreement with complementary error-function behavior and previous studies, the profiles in the HW layer suggest that the multiple-trapping motion of the H and D atoms is much slower, possibly due to an interface layer of defects. However, an exponential “tail” of D atoms extends deep into the HW layer, probably due to a long diffusion length of mobile D atoms, consistent with the established release times of H and D from the GD layer and H loss typical during growth of HW films. The results are also discussed in terms of the H exchange model and compared to previous NMIR studies of HW a-Si:H, which suggest that most of the hydrogen in the HW layer is concentrated in H-rich clusters dispersed in a network of very low H content.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mahan, A. H., Carapella, J., Nelson, B. P., Crandall, R. S., and Balberg, I., J. Appl. Phys. 69, 6728 (1991).Google Scholar
2. Mahan, A. H. and Vanacek, J., in Amorphous Silicon Materials and Solar Cells, edited by Stafford, B. L., AIP Conf. Proc. 234, 195 (AIP Press, NY, 1991).Google Scholar
3. Kwon, D., Cohen, J. D., Nelson, B. P., and Iwaniczko, E., in Amorphous Silicon Technology -1995, edited by Hack, M., Schiff, E. A., Madan, A., Powell, M., and Matsuda, A., Mat. Res. Soc. Symp. Proc. 377, 301 (1995).Google Scholar
4. Wu, Y., Stephen, J. T., Han, D. X., Rutland, J. M., Crandall, R. S., and Mahan, A. H., Phys. Rev. Lett. 77, 2049 (1996).Google Scholar
5. Liu, X., White, B. E. Jr, Pohl, R. O., Iwanizcko, E., Jones, K. M., Mahan, A. H., Nelson, B. N., Crandall, R. S., and Veprek, S., Phys. Rev. Lett. 78, 4418 (1997).Google Scholar
6. Santos, P. V., Johnson, N. M., and Street, R. A., Phys. Rev. Lett. 67, 2686 (1991).Google Scholar
7. Branz, H. M., Asher, S. E., and Nelson, B. P., Phys. Rev. B 47, 7061 (1993).Google Scholar
8. Biswas, R., Li, Q., Pan, B. C., and Yoon, Y., Phys. Rev. B 57, 2253 (1998); R. Biswas and B. C. Pan, Appl. Phys. Lett. 72, 371 (1998); R. Biswas and Y.-P. Li, Phys. Rev. Left. 82, 2512 (1999).Google Scholar
9. Branz, H. M., Sol. St. Comm. 105, 387 (1998).Google Scholar
10. Street, R. A., Tsai, C. C., Kakalios, J., and Jackson, W. B., Phil. Mag. B 56, 305 (1987).Google Scholar
11. Kakalios, J., Street, R. A., and Jackson, W. B., Phys. Rev. Lett. 59, 1037 (1987).Google Scholar
12. Shinar, J., Shinar, R., Mitra, S., and Kim, J.-Y., Phys. Rev. Lett. 62, 2001 (1989).Google Scholar
13. Tang, X-M., Weber, J., Baer, Y., and Finger, F., Phys. Rev. B 41, 7945 (1990); Phys. Rev. Lett.62 2001 (1989)42, 7277 (1990).Google Scholar
14. Shinar, J., Shinar, R., Wu, X.-L., Mitra, S., and Girvan, R. F., Phys. Rev. B 43, 1631 (1991).Google Scholar
15. Shinar, R., Shinar, J., Jia, H., and Wu, X.-L., Phys. Rev. B 47, 9361 (1993).Google Scholar
16. Halpern, V., Phys. Rev. Lett. 67, 611 (1991).Google Scholar
17. Shinar, J., Jia, H., Shinar, R., Chen, Y., and Williamson, D. L., Phys. Rev. B 50, 7358 (1994).Google Scholar
18. Kemp, M. and Branz, H. M., Phys Rev. B 47, 7067 (1993); Phys. Rev. B 52, 13946 (1995).Google Scholar
19. Shinar, R., Shinar, J., Iwaniczko, E., Mahan, A. H., Crandall, R. S., and Branz, H. M., unpublished results.Google Scholar
20. Williamson, D. L., in Amorphous Silicon Technology- 1995, edited by Hack, M., Schiff, E. A., Madan, A., Powell, M., and Matsuda, A., Mat. Res. Soc. Symp. Proc. 377, 251 (1995)..Google Scholar