Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-20T00:09:55.400Z Has data issue: false hasContentIssue false

A Comparative Study of Gas Chemistry in Methane/Hydrogen and Acetylene/Hydrogen Gas Mixtures During Hot-Filament Vapor Deposition of Diamond

Published online by Cambridge University Press:  26 February 2011

Ching-Hsong Wu
Affiliation:
Research Staff, Ford Motor Company, Dearborn, MI 48121-2053
M. A. Tamor
Affiliation:
Research Staff, Ford Motor Company, Dearborn, MI 48121-2053
T. J. Potter
Affiliation:
Research Staff, Ford Motor Company, Dearborn, MI 48121-2053
E. W. Kaiser
Affiliation:
Research Staff, Ford Motor Company, Dearborn, MI 48121-2053
Get access

Abstract

The technology of low pressure chemical vapor deposition (CVD) of polycrystalline diamond films has advanced substantially in recent years [1–3]. However, fundamental understanding of the chemistry and physics occurring in this CVD process is still lagging. Although the key role that H atoms play in diamond CVD has long been recognized [4–6], the identity of the gaseous diamond precursors and the mechanism by which diamond is formed are still unclear. Only recently has interest in these critical issues grown. For example, theoretical predictions and quantum mechanical calculations of gas-solid reaction paths involving CH3 and CH3+ [7] or C2H2 [8] have been reported, and the thermodynamic analyses of diamond CVD processes have been examined [9,10]. In addition, experimental results and chemical models [11–16] have been presented in attempts to support specific species as the essential precursors of diamond growth. Nevertheless, no consensus has been reached concerning the growth species and mechanism in CVD diamond processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Angus, J. C. and Hayman, C. C., Science 241, 913 (1988).Google Scholar
2. Spitsyn, B. V., Bouilov, L. L., and Derjaguin, B. V., J. Cryst. Growth 52, 219 (1981).Google Scholar
3. Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys. 21, L183 (1982)Google Scholar
4. Lander, J. J. and Morrison, J, Surf. Sci. 2, 553 (1964); J. Chem. Phys. 34 1403 (1963).Google Scholar
5. Angus, J. C., Will, H. A., and Stanko, W. S., J. Appl. Phys. 39, (1968) 2915; S. P. Chauham, J. C. Angus, N. C. Gardner, J. Appl. Phys. 47, 4746 (1976); J. Vac. Sci. Technol. 11, 423 (1974).Google Scholar
6. Fedoseev, D. V., Varnin, V. P., and Derjaguin, B. V., Russ. Chem. Rev. 53, 435 (1984).Google Scholar
7. Tsuda, M., Nakajima, M., and Oikawa, S., J. Am. Chem. Soc. 108, 5780 (1986); Jpn. J. Appl. Phys. 26, L527 (1987).Google Scholar
8. Frenklach, M. and Spear, K. E., J. Mater. Res. 3, 133 (1988); D. Huang M. Frenklach, and M. Maroncelli, J. Phys. Chem. 92, 6379 (1988).Google Scholar
9. Piekarczyk, W., J. Cryst Growth, 82, 367 (1987); W. Piekarczyk, R. Messier, R. Roy, and C. Engdahl, submitted to J. Cryst Growth.Google Scholar
10. Summer, M., Mui, K., and Smith, F. W., Solid State Commun. 69, 775 (1989)Google Scholar
11. Aikyo, H. and Kondo, K., Jpn. J. Appl. Phys., 28, L1931 (1989).Google Scholar
12. Celii, F. G., Pehrsson, P. E., Wang, H. T., and Butler, J. E., Appl. Phys. Lett. 52, 2043 (1988); F. G. Celii and J. E. Butler, Appl. Phys. Lett. 54, 1031 (1989).Google Scholar
13. Harris, S. J., J. Appl. Phys. 65, 3044 (1989); S. J. Harris, A. M. Weiner, and T. A. Perry, Appl. Phys. Lett. 53 1605 (1988).Google Scholar
14. Mucha, J. A., Flamm, D. L., and Ibbotson, D. E., J. Appl. Phys. 65, 3448 (1989).Google Scholar
15. Matsui, Y., Yuuki, A., Sahara, M., and Hirose, Y., Jpn. J. Appl. Phys. 28, 1718 (1989).Google Scholar
16. Frenklach, M., J. Appl. Phys. 65, 5142 (1989).Google Scholar
17. Wu, C. H., Tamor, M. A., Potter, T. J., and Kaiser, E. W. in Technology UVpdate on Diamond Films, eds. Chang, R. P. H., Nelson, D., and Hiraki, A., (Mater. Res. Soc. Proc., Pittsburgh, PA 1989) p 3742.Google Scholar
18. Kaiser, E. W., Rothschild, W. G., Lavoie, G. A., Combust. Sci. Technol. 33, 123 (1983); E. W. Kaiser, W. G. Rothschild, G. A. Lavoie, Combust. Sci. Technol., 41, 271 (1984).Google Scholar
19. Chase, M. W. Jr, Davies, C. A., Douney, J. R. Jr, Furip, D. A., McDonald, R. A., and Syverad, A. N., JANAF Thermochemical Table, 3rd ed. (American Chemical Society, Washington, DC, 1986).Google Scholar
20. Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., Molecular Theory of Gases and Liquid, (John Wiley & Sons, New York, 1967).Google Scholar