Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-11T08:25:53.081Z Has data issue: false hasContentIssue false

A Comparative Study Between high and low Temperature Thermally Controlled Crystallization of thin films

Published online by Cambridge University Press:  15 February 2011

Richard D. Robinson
Affiliation:
Thermal Analysis of Materials Processing Laboratory, Mechanical Engineering Department, Tufts University, Medford, MA 02155
Ioannis N. Miaoulis
Affiliation:
Thermal Analysis of Materials Processing Laboratory, Mechanical Engineering Department, Tufts University, Medford, MA 02155
Get access

Abstract

Numerical simulation of zone-Melting recrystallization (ZMR) was conducted to determine the heat transfer dynamics over a wide range of temperatures. ZMR is a thermal processing technique used to recrystallize Materials. Therefore, the thermal effects induced by the ZMR process critically affect the crystallization dynamics. Parametric studies indicated that the conductive heat flux from the heat source through the gas accounted for at least 15% of the total energy heating the film for materials with melting points less than 800°C. The influence of this conductive heating has been neglected in past analyses. Also, Materials with higher melting points are less sensitive to changes in the heat flux from the heat source. Slight variations of thermal gradients in the film can lead to different qualities of crystal, so care must be taken when processing materials with lower melting points, since they are more sensitive to temperature variation. This paper analyzes the dominant modes of heat transfer in ZMR over a wide range of temperatures that influence the recrystallization dynamics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, C.K., Geis, M. W., Tsaur, B-Y., Chapman, R. L., and Fan, J. C. C., J. Electrochem. Soc. 131, 1707 (1984)Google Scholar
2. Miaoulis, I. N., Wong, P. Y., Lipman, J. D., and Im, J. S., J. Appl. Phys. 69, 7273 (1991)Google Scholar
3. Pfeiffer, L., Gelman, A. E., Jackson, K. A., and West, K. W., Mat. Res. Soc. Proc. 74, 543 (1987)Google Scholar
4. Mertens, P. W., Thesis, Katholieke Universiteit Leuven, Belgium 1991, (University Microfilms Incorporated dissertation services, Ann Arbor, MI, 1992)Google Scholar
5. Robinson, R. D. and Miaoulis, I. N., J. Appl. Phys. 73, 439 (1993)Google Scholar
6. Im, J. S., Chen, C. K., Thompson, C. V., Geis, M. W. and Tomita, H., Mat. Res. Soc. Proc. 107, 169 (1988)Google Scholar
7. Dutartre, D., Mat. Sci. Eng. B 4, 211 (1989)Google Scholar
8. Geis, M. W., Smith, H. I., Silversmith, D. J., Mountain, R. W., and Thompson, C. V., J. Electrochem. Soc. 130, 1178 (1983)Google Scholar
9. Jackson, K. A. and Kurtze, D. A., J. Cryst. Growth 71, 385 (1985)Google Scholar
10. Im, J. S., Lipman, J. D., Miaoulis, I. N., Chen, C. K. and Thompson, C. V., Mater. Res. Soc. Proc. 157, 455 (1990)Google Scholar
11. Yoon, S. Y. and Miaoulis, I. N., J. Mater. Res. 7, 124 (1992)Google Scholar
12. Zavracky, P. M., “Silicon-on-insulator Wafers by Zone Melting Recrystallization,” Solid State Technology 34, 55 (1991)Google Scholar
13. Robinson, R. D. and Miaoulis, I. N., J. Appl. Phys. (to be published Feb. 1994)Google Scholar
14. Heilman, B. D., Marston, M. A., Wong, P. Y. and Miaoulis, I. N., J. Mater. Res. 8, 551 (1993)Google Scholar
15. Mullins, W. W. and Sekerka, R. F., J. Appl. Phys. 35, 444 (1964)Google Scholar
16. Flomerics Limited, The Flotherm Reference Manual (England, 1992)Google Scholar
17. Lipman, J. D., Thesis, Tufts University, 1989 Google Scholar
18. Lipman, J. D., Wong, P. Y., Miaoulis, I. N., and Im, J. S., HTD- Vol. 123, Collected Papers in Heat Transfer, The American Society of Mechanical Engineers, pp. 211217, Dec. 1989.Google Scholar