Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-01T08:09:32.808Z Has data issue: false hasContentIssue false

Comparative Electrical Study of Epitaxial and Polycrystalline GdSi2/(100)p-Si Schottky Barriers

Published online by Cambridge University Press:  25 February 2011

B. Kovács
Affiliation:
Research Institute for Technical Physics of the Hungarian Academy of Sciences, Budapest P.O. Box 76, H-1325, Hungary
Zs. J. Horváth
Affiliation:
Research Institute for Technical Physics of the Hungarian Academy of Sciences, Budapest P.O. Box 76, H-1325, Hungary
I. Mojzes
Affiliation:
Research Institute for Technical Physics of the Hungarian Academy of Sciences, Budapest P.O. Box 76, H-1325, Hungary Technical University, Budapest, H-1521, Hungary
G. Molnár
Affiliation:
Central Research Institute for Physics of the Hungarian Academy of Sciences, Budapest P.O. Box 49, H-1525, Hungary
G. Petó
Affiliation:
Central Research Institute for Physics of the Hungarian Academy of Sciences, Budapest P.O. Box 49, H-1525, Hungary
M. Andrási
Affiliation:
Central Research Institute for Physics of the Hungarian Academy of Sciences, Budapest P.O. Box 49, H-1525, Hungary
Get access

Abstract

The electrical and interface parameters of epitaxial orthorombic, textured orthorombic, polycrystalline orthorombic, and polycrystalline hexagonal structures with different initial thickness of the evaporated Gd layer are compared. The Schottky barrier height, the ideality factor, the series resistance, the breakdown voltage, the relative interfacial layer thickness, the energy distribution spectra of interface states, and the equilibrium interface charge have been evaluated from the current-voltage and capacitance-voltage measurements. The obtained results indicate that the initial thickness of the Gd layer influences much more stronger the obtained parameters through the perfection of the epitaxial layer than the crystal structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

1. Liehr, M., Schmid, P. E., LeGoues, F. K., and Ho, P. S., Phys. Rev. Lett. 54, 2139 (1985).Google Scholar
2. Tung, T., Ng, K. K., Gibson, J. M., and Levi, A. F. J., Phys. Rev. B 33, 7077 (1986).Google Scholar
3. Schmid, P. E., Liehr, M., LeGoues, F. K., and Ho, P. S., Mat. Res. Soc. Symp. Proc, 54, 469 (1986).Google Scholar
4. Kikuchi, A., Phys. Rev. B, 39, 13323 (1989).CrossRefGoogle Scholar
5. Tung, R. T., Levi, A. F. J., Sullivan, J. P., and Schrey, F., Phys. Rev. Lett. 66, 72 (1991).Google Scholar
6. Fathauer, R. W., Xiao, Q. F., Hashimoto, S., and Nieh, C. W., Appl. Phys. Lett., 57 686 (1990).CrossRefGoogle Scholar
7. Ogawa, S., Kouzaki, T., Yoshida, T., and Sinclair, R., J. Appl. Phys. 70, 827 (1991).CrossRefGoogle Scholar
8. Geröcs, I., Molnár, G., Jároli, E., Zsoldos, E., Petõ, G., Gyulai, J., and Bugiel, E., Appl. Phys. Lett. 51, 2144 (1987).CrossRefGoogle Scholar
9. Molnár, G., Geröcs, I., Petõ, G., Zsoldos, E., Gyulai, J., and Bugiel, E., Appl. Phys. Lett. 58, 249 (1991).CrossRefGoogle Scholar
10. Horváth, Zs. J., J. Appl. Phys. 63, 976 (1988).Google Scholar
11. Horváth, Zs. J., Acta Phys. Polonica A 79, 167 (1991).CrossRefGoogle Scholar
12. Horváth, Zs. J., Appl. Phys. Lett, 54, 931 (1989).CrossRefGoogle Scholar
13. Tu, K. N., Thompson, R. D. and Tsaur, B. Y., Appl. Phys. Lett. 38, 626 (1981).Google Scholar
14. Molnár, G., Kovács, B., Petö, G., Andrási, M. and Horváth, Zs. J., presented at the 3rd European Vacuum Conf. and Austrian-Hungarian-Yugoslav Fifth Joint Vacuum Conf., Sept. 23–27, 1991, Wien, Austria, Conf. Handbook p. A65.Google Scholar
15 Horváth, Zs. J., Proc. l9th European Solid State Device Res. Conf. (ESSDERC89), edited by Heuberger, A., Ryssel, H. and Lange, P. (Springer, Berlin, 1989) pp. 602606.Google Scholar
16. Sullivan, J. P., Tung, R. T., Pinto, M. R., and Graham, W. R., J. Appl. Phys. 70, 7403 (1991).CrossRefGoogle Scholar
17. Eglash, S. J., Newman, N., Pan, S., Mo, D., Shenai, K., Spicer, W. E., Ponce, F. A., and Collins, D. M., J. Appl. Phys. 61, 5159 (1987).CrossRefGoogle Scholar
18. Horváth, Zs. J., J. Appl. Phys. 64, 443, (1988).Google Scholar
19. Horváth, Zs. J., presented at the 1992 MRS Spring Meeting, San Francisco, CA, USA, 1992.Google Scholar
20. Horváth, Zs. J., Gyúró, I., Németh-Sallay, M., Szentpáli, B., and Kazi, K., Phys. Stat. Sol. (a) 94, 719726 (1986).Google Scholar
21. Sze, S. M. and Gibbons, G., Solid-State Electron. 9, 831 (1966).Google Scholar
22. Horváth, Zs. J., J. Appl. Phys. 64, 6780 (1988).CrossRefGoogle Scholar