Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-03T16:56:46.157Z Has data issue: false hasContentIssue false

Combinatorial Fabrication and Study of Luminescent Nanocrystalline Si Particles Embedded in a SiO2 Matrix

Published online by Cambridge University Press:  26 February 2011

Luis F Fonseca
Affiliation:
lfonseca@rrpac.upr.clu.edu
Oscar Resto
Affiliation:
oresto@rrpac.upr.clu.edu
S. Zvi Weisz
Affiliation:
zweisz@rrpac.upr.clu.edu
Joseph Shinar
Affiliation:
shinar@ameslab.gov, United States
Get access

Abstract

The combinatorial fabrication of nanocrystalline Si particles embedded in a SiO2 matrix (nc-Si:SiO2) by RF co-sputtering of Si and SiO2 targets is described. The peak of the photoluminescence (PL) spectra of the films varies systematically from 760 to 600 nm, consistent with the presumed systematic variation in the size distribution of the embedded Si particles. The correlation between the optical properties of the samples and the formation parameters is also analyzed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsybeskov, L., MRS Bulletin, April 1998, p. 33.Google Scholar
2. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
3. Kanemitsu, Y., Futagai, T., Matsumoto, T., and Mimura, H., Phys. Rev. B 49, 14732 (1994).Google Scholar
4. Wang, L.W. and Zunger, A., J. Phys. Chem. 98, 2158 (1994).Google Scholar
5. Delerue, C., Allan, G., and Lannoo, M., Phys. Rev. B 48, 11024 (1993).Google Scholar
6. Hill, N. A. and Whaley, K. B., Phys. Rev. Lett. 75, 1130 (1995).Google Scholar
7. Delerue, C., Allan, G., Lannoo, M., J. of Lumin. 80, 65 (1999).M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delereu, Phys. Rev. Lett. 82, 197 (1999); A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, J. Chem. Phys. 117 6721 (2002); J. S. Biteen, N. S. Lewis, H. A. Atwater, and A. Polman, Appl. Phys. Lett. 84, 5389 (2004)Google Scholar
8. Hayashi, S., Yamamoto, K., Kanzawa, Y. and Fujii, M., Mat. Sci. Eng. A 217–218, 155 (1996); Y. Kanzawa, M. Fujii, S. Hayashi and K. Yamamoto, Sol. St. Comm. 100, 227 (1996); Y. Kanzawa, T. Kageyama, S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, Sol. St. Comm. 102, 533 (1997); M. Fujii, S. Hayashi, and K. Yamamoto, J. Appl. Phys. 83, 7953–7957 (1998); A Mimura, M Fujii, S Hayashi, K Yamamoto, Sol. St. Comm. 109, 561 (1999). K. Sato, Y. Sugiyama, T. Izumi, M. Iwasw, Y. Show, S. Nozaki, H. Morisaki, Mat. Res. Soc. Symp. Proc. 536, 57 (1999).Google Scholar
9. Delerue, C., Lannoo, M., and Allan, G., J. Lumin. 57, 249 (1993).Google Scholar
10. Hanak, J. J., Lehman, H. W., and Wehner, R. K., J. Appl. Phys. 43, 1666 (1972).Google Scholar
11. Fonseca, L.F., Resto, O., Katiyar, R., Gupta, S., Weisz, S.Z., Goldstein, Y., Many, A., and Shapir, J., in Proceedings of the 24th International Conference on the Physics of Semiconductors, CD version (Jerusalem, Israel 1998).Google Scholar
12. Charvet, S., Madelon, R., Rizk, R., Garrido, B., González-Varona, O., López, M., Pérez-Rodríguez, A., and Morante, J. R., J. of Lumin. 80, 241 (1999).Google Scholar