Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-12T01:22:57.668Z Has data issue: false hasContentIssue false

Coherent and Incoherent Relaxation in III-V Heterostructures

Published online by Cambridge University Press:  10 February 2011

André Rocher
Affiliation:
Centre d'Elaboration de Matériaux et d'Etudes Structurales, CEMES/CNRS, BP 4347, F-31055 Toulouse, France
Etienne Snoeck
Affiliation:
Centre d'Elaboration de Matériaux et d'Etudes Structurales, CEMES/CNRS, BP 4347, F-31055 Toulouse, France
Get access

Abstract

The relaxation for large lattice mismatch systems such as GaSb/GaAs and GaAs/InP has been studied by numerical analysis of HREM images. The GaSb/GaAs epitaxial system can be obtained with an interface constituted by a perfect square array of Lomer dislocations. GaSb appears to be coherently and homogeneously relaxed. For GaAs/InP grown at 450°C the GaAs layer becomes well relaxed at some distances from the interface by a network of randomly distributed partial and 60° dislocation segments with a limited length. At low temperature, the plastic relaxation appears directly at the growth front when the individual adatoms take a position different from the ideal pseudomorphic one. In this case, the relaxation mechanism is incoherent.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hÿtch, M.J., Snoeck, E., Kilaas, R., Ultramicroscopy, 74 (1998) 131.Google Scholar
2. Snoeck, E., Warot, B., Ardhuin, H., Rocher, A., Casanove, M.J., Kilaas, R. and Hÿtch, M.J., Thin Solid Films, 319 (1998) 157;Google Scholar
Rocher, A., Snoeck, E., Thin Solid Films, 319 (1998) 172.Google Scholar
3. Raisin, C., Saguintaah, B., Tetegmousse, H., Lassabatzère, L., Girault, B. and Allibert, C., Ann. Telecommun. 41 (1986) 50.Google Scholar
4. Goldstein, L., Fortin, C., Starck, C., Plais, A., Jacquet, J., Boucart, J., Rocher, A. and Poussou, C. Electron. Lett. 34 (1998) 268.Google Scholar
5. Rocher, A., Kang, J. M., Inst. Phys. Conf. Ser. 146 (1995) p 135;Google Scholar
Rocher, A, Snoeck, E, Mat Science and Engineering B56, (1999).Google Scholar
6. Rocher, A., Kang, J.M., Atmani, H., Crestou, J., Vanderschaeve, G., Lassabatère, L. and Bonnet, R.', Inst. Phys. Conf. Ser., 117 (1991) 509.Google Scholar
7. Goldfarb, J, Owen, J H G, Hayden, P T, Miki, K and Briggs, G A D, Inst. Phys. Conf. Ser. 157 (1997) 597.Google Scholar
8. Choi, C., Otsuka, N, Munns, G, Houdre, R., Morkoç, H, Zhang, S.L., Levi, D., Klein, M.V., Appl. Phys. Let. 50 (1987) 992.Google Scholar
9. Patriarche, G., Jeannès, F., Oudar, J.L. and Glas, F., Inst. Phys. Conf. Ser. 157 (1997) 103.Google Scholar