Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-13T07:59:22.575Z Has data issue: false hasContentIssue false

CO2 laser annealing synthesis of silicon nanocrystals buried in Si-rich SiO2

Published online by Cambridge University Press:  01 February 2011

Chun-Jung Lin
Affiliation:
Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan R. O. C.
Yu-Lun Chueh
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan R. O. C.
Li-Jen Chou
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan R. O. C.
Hao-Chung Kuo
Affiliation:
Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan R. O. C.
Gong-Ru Lin
Affiliation:
Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan R. O. C.
Get access

Abstract

Localized synthesis of 3-8 nm Si nanocrystals (nc-Si) in PECVD-grown Si-rich SiO2 (SRSO) film is demonstrated using CO2 laser annealing at an intensity below the ablation-threshold (6.0 kW/cm2). At an optimized surface temperature of 1285°C, the precipitated nc-Si in CO2-laser-annealed SRSO film results in near-infrared photoluminescence (PL) at 806 nm, whereas the ablation damage induced at higher laser intensities as well as temperatures results in blue PL at 410 nm related to structural defects. The refractive index of the laser-annealed SRSO at 633 nm increases from 1.57 to 2.31 as the laser intensity increases from 1.5 to 6.0 kW/cm2. Transmission electron microscopy analysis reveals that the average size and volume density of Si nanocrystals embedded in the SRSO film are about 6 nm and 4.5×1016 cm-3, respectively. The CO2 laser annealing with controlled intensity and spot size can potentially accomplish in-situ, localized annealing of the SRSO film without causing irreversible damage to nearby electronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pavesi, L., Negro, L. Dal, Mazzoleni, C., Franzo, G., and Priolo, F., Nature (London) 408, 440 (2000).10.1038/35044012Google Scholar
2 Rossi, M. C., Salvatori, S., Galluzzi, F., and Conte, G., Mater. Sci. Eng. B 69-70, 299 (2000).10.1016/S0921-5107(99)00291-3Google Scholar
3 Janotta, A., Dikce, Y., Schmidt, M., Eisele, C., Stutzmann, M., Luysberg, M., and Houben, L., J. Appl. Phys. 95, 4060 (2004).10.1063/1.1667008Google Scholar
4 Gallas, B., Kao, C.-C., Fisson, S., Vuye, G., Rivory, J., Bernard, Y., and Belouet, C., Appl. Surf. Sci. 185, 317 (2002).10.1016/S0169-4332(01)00983-7Google Scholar
5 Palik, E. D., Handbook of Optical Constants of Solids (Academic Press, Washington, 1985).Google Scholar
6 Shiu, T. R., Grigoropoulos, C. P., Cahill, D. G., and Greif, R., J. Appl. Phys. 86, 1311 (1999).10.1063/1.370887Google Scholar
7 Zhao, J., Sullivan, J., Zayac, J., and Bennett, T. D., J. Appl. Phys. 95, 5475 (2004).10.1063/1.1703832Google Scholar
8 Lin, G.-R., Lin, C. J., and Lin, C. K., Appl. Phys. Lett. 85, 935 (2004).10.1063/1.1779945Google Scholar
9 Nishikawa, H., Nakamura, R., and Stathis, J. H., Phys. Rev. B 60, 15910 (1999).10.1103/PhysRevB.60.15910Google Scholar
10 Iacona, F., Franzo, G., Moreira, E. C., Pacifici, D., Irrera, A., and Priolo, F., Mater. Sci. Eng. C 19, 377 (2002).10.1016/S0928-4931(01)00424-6Google Scholar
11 Delerue, C., Allan, G., and Lannoo, M., Phys. Rev. B 48, 11024 (1993).10.1103/PhysRevB.48.11024Google Scholar
12 Cheang-Wong, J. C., Oliver, A., Roiz, J., and Hernánaez, J. M., Rodríguez-Fernández, L., Morales, J. G., Crespo-Sosa, A., Nucl. Instrum. Methods Phys. Res. B 175, 490 (2001).10.1016/S0168-583X(00)00674-1Google Scholar