Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T02:03:20.448Z Has data issue: false hasContentIssue false

Closed-loop control of a laser assisted carbon nanotube growth process for interconnects in flexible electronics

Published online by Cambridge University Press:  29 July 2011

Yoeri van de Burgt*
Affiliation:
Department of Mechanical Engineering, Eindhoven University Technology, Den Dolech 2, Eindhoven, The Netherlands. Holst Centre/TNO – Netherlands Organization for Applied Scientific Research, HTC31, Eindhoven, The Netherlands.
Yves Bellouard
Affiliation:
Department of Mechanical Engineering, Eindhoven University Technology, Den Dolech 2, Eindhoven, The Netherlands.
Rajesh Mandamparambil
Affiliation:
Holst Centre/TNO – Netherlands Organization for Applied Scientific Research, HTC31, Eindhoven, The Netherlands.
Andreas Dietzel
Affiliation:
Department of Mechanical Engineering, Eindhoven University Technology, Den Dolech 2, Eindhoven, The Netherlands. Holst Centre/TNO – Netherlands Organization for Applied Scientific Research, HTC31, Eindhoven, The Netherlands.
*
*Tel: +31402472186. E-mail: y.b.v.d.burgt@tue.nl
Get access

Abstract

A feedback control mechanism based on infrared radiation monitoring coupled with reflectivity information was developed to control the temperature of a laser assisted chemical vapor deposition process for the growth of carbon nanotube forests. An infrared laser operating at 808 nm is focused on a silicon substrate containing a 20 nm-aluminum-oxide layer and a 1.5 nm-iron catalyst layer. The growth takes place in an argon/ hydrogen/ ethylene gaseous environment. SEM and Raman spectroscopy analysis show that good controllability and reproducibility is achieved over multiple experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Berggren, M., Nilsson, D., and Robinson, N. D., Nature Materials 6, 35 (2007).Google Scholar
2. Allen, K. J., Proceedings of the IEEE 93, 13941399 (2005)Google Scholar
3. van den Brand, J., Kusters, R., Barink, M., and Dietzel, A., Microelectronic Engineering 87, 18611867 (2010)Google Scholar
4. Xu, Y. and Srivastava, A., Int. J. Circ. Theor. Appl. 38, 559575 (2010).Google Scholar
5. Haluska, M., Bellouard, Y., van de Burgt, Y., and Dietzel, A., Nanotechnology 21, 7 (2010).Google Scholar
6. Melechko, A. V., Merkulov, V. I., McKnight, T. E., Guillorn, M. A., Klein, K. L., Lowndes, D. H., and Simpson, M. L., Journal of Applied Physics 97, 041301 (2005)Google Scholar
7. Alexandrescu, R., Crunteanu, A., Morjan, R.-E., Morjan, I., Rohmund, F., Falk, L. K. L., Ledoux, G., and Huisken, F., Infrared Physics & Technology 44, 4350 (2003)Google Scholar
8. Park, J. B., Jeong, S. H., Jeong, M. S., Lim, S. C., Lee, I. H., and Lee, Y. H., Nanotechnology 20, 185604 (2009)Google Scholar
9. Dresselhaus, M. S., Dresselhaus, G., Saito, R., and Jorio, A., Physics Reports 409, 4799 (2005)Google Scholar
10. Saito, R., Jorio, A., Filho, A. G. S., Dresselhaus, G., Dresselhaus, M. S., Grüneis, A., Cançado, L. G., and Pimenta, M. A., Jpn. J. Appl. Phys. 41, 48784882 (2002)Google Scholar