Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-17T10:24:14.691Z Has data issue: false hasContentIssue false

Chemically Induced Defects in Oxynitride Glasses

Published online by Cambridge University Press:  25 February 2011

Donald R. Messier
Affiliation:
U.S. Army Research Laboratory Materials Directorate, Watertown, MA 02172–0001
Parimal J. Patel
Affiliation:
U.S. Army Research Laboratory Materials Directorate, Watertown, MA 02172–0001
Get access

Abstract

The ultimate usefulness of oxynitride glasses and fibers depends upon the minimization or elimination of metallic defects that arise during processing. Despite this, the origins and chemistry of such defects in oxynitride glasses have received scant attention in the literature. The defects reduce glass transparency and cause oxynitride glass fibers to fail at relatively low stress levels. The same types of defects undoubtedly occur in the grain boundary glass phase of sintered Si3N4with unknown effects on material properties.

Exampls are shown of Si-rich metallic defects in oxynitride glasses, and their effects on glass and fiber properties are discussed. Chemical reactions that produce the defects are considered, as are chemical analysis results supporting the proposed reaction mechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jack, K.H., in Nitrogen Ceramics, Edited by Riley, F.L. (Noordhoff, Leyden, 1977), pp. 257261.Google Scholar
2. Shillito, K. R., Wills, R.R., and Bennett, R.B., J. Am. Ceram. Soc., 61 [11-12] 537 (1978).Google Scholar
3. Loehman, R.E., J. Am. Ceram. Soc., 62 [9-10] 491494 (1979); J. Non-Cryst. Solids, 42 433-446 (1980); ibid., 56 123-134 (1983).Google Scholar
4. Drew, R.A.L., Hampshire, S., Jack, K.H., in Special Ceramics 7. edited by Taylor, D. and Popper, P.. Proc. Brit. Ceram. Soc., [31] 119132 (1981).Google Scholar
5. Messier, D.R., Rev. Chim. Min., 22 518533 (1985).Google Scholar
6. Messier, D.R. and Gleisner, R.P., U.S. Army MTL TR 92-6 (1992).Google Scholar
7. Baik, S. and Raj, R., J. Am. Ceram. Soc., 68 [5] C124 (1985).Google Scholar
8. JANAF Thermochemical Tables, 2nd ed. (U.S. Govt. Printing Office, Washington, D.C., 1971).Google Scholar
9. Zintl, E., Z. anorg. allgem. Chem., 245 [1] 17 (1940).Google Scholar
10. Geld, P.V. and Esin, O.A., J. Appl. Chem. USSR, 23 12771283 (1950).Google Scholar
11. Mulfinger, H.-O., J. Am. Ceram. Soc., 49 [9] 462467 (1966).Google Scholar
12. Kelen, T. and Mulfinger, H.-O., Glastechn. Ber., 41 [6] 230242 (1968).Google Scholar
13. Schrimpf, C., Doctoral Dissertation, Tech. U. Clausthal, 1982.Google Scholar
14. Schrimpf, C. and Frischat, G.H., J. Non-Cryst. Solids, 52 479485 (1982).Google Scholar
15. Schrimpf, C., and Frischat, G.H., Glastech. Ber., 57 [5] 97111 (1984).Google Scholar
16. Homeny, J. and McGarry, D.L., J. Am. Ceram. Soc., 67 [11] C225 (1984).Google Scholar
17. Jankowski, P.E. and Risbud, S.H., J. Am. Ceram. Soc., 63 [5-6] 350352 (1980).Google Scholar
18. Messier, D.R., Ceram. Eng. Sci. Proc., 3 [9-10] 565575 (1982).Google Scholar
19. Messier, D.R. and DeGuire, E.J., J. Amer. Ceram. Soc., 67 (9) 602605 (1984).Google Scholar
20. Messier, D.R. (unpublished data).Google Scholar
21. Paul, A., Chemistry of Glasses. (Chapman and Hall, London, 1982), p. 148.Google Scholar
22. Patel, P.J., Messier, D.R., Rich, R.E., in Technology 2001, (NASA Conference Publication 3136, Vol. 2, 1991) pp. 258264.Google Scholar