Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T20:12:00.717Z Has data issue: false hasContentIssue false

Chemical Vapor Deposition of Diamond Films Using Water:Alcohol:Organic-Acid Solutions

Published online by Cambridge University Press:  25 February 2011

R. A. Rudder
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709–2194
J. B. Posthill
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709–2194
G. C. Hudson
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709–2194
D. P. Malta
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709–2194
R. E. Thomas
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709–2194
R. J. Markunas
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709–2194
T. P. Humphreys
Affiliation:
Dept. of Physics, North Carolina State University, Raleigh, NC 27695–8202
R. J. Nemanich
Affiliation:
Dept. of Physics, North Carolina State University, Raleigh, NC 27695–8202
Get access

Abstract

A low pressure chemical vapor deposition technique using water-alcohol vapors has been developed for the deposition of polycrystalline diamond films and homoepitaxial diamond films. The technique uses a low pressure (0.50 – 1.00 Torr) rf-induction plasma to effectively dissociate the water vapor into atomic hydrogen and OH. Alcohol vapors admitted into the chamber with the water vapor provide the carbon balance to produce diamond growth. At 1.00 Torr, high quality diamond growth occurs with a gas phase concentration of water approximately equal to 47% for methanol, 66% for ethanol, and 83% for isopropanol. A reduction in the critical power necessary to magnetically couple to the plasma gas is achieved through the addition of acetic acid to the water.alcohol solution. The lower input power allows lower temperature diamond growth. Currently, diamond depositions using water:methanol:acetic-acid are occurring as low as 300 ° C with only about 500 W power input to the 50 mm diameter plasma tube.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Derjaguin, B. and Fedoseev, V., Russ. Chem. Rev. 39, 783 (1970).Google Scholar
2. Spitsyn, B. V., Bouilov, L. L., and Derjaguin, B. V., J. Cryst. Growth 52, 219 (1981).CrossRefGoogle Scholar
3. Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys. 21, 183 (1982).CrossRefGoogle Scholar
4. Hirose, Y. and Teresawa, Y., Jpn. J. Appl. Phys. 25, L51 (1986).Google Scholar
5. Kamo, M., Sato, Y., Matsumoto, S., and Setaka, N., J. Cryst. Growth 62, 642 (1983).Google Scholar
6. Hanssen, L. M., Carrington, W. A., Butler, J. E., and Snail, K. A., Mater. Letters 7, 289 (1988).Google Scholar
7. Janssen, G., Van Enckevort, W. J. P., Schaminee, J. J. D., Vollenberg, W., Giling, L. J., Seal, M., J. Cryst. Growth 104, 752 (1990).Google Scholar
8. Bachmann, Peter K., Leers, Dieter, and Lydtin, Hans, Diamond and Related Materials 1, 1 (1991).CrossRefGoogle Scholar
9. Buck, M., Chuang, T. J., Kaufman, J. H., and Seki, H., Mat. Res. Soc. Symp. Proc. 162, 97 (1990).Google Scholar
10. Chen, C. F., Hon, T. M. and Lin, C. L., presented at 18th Int. Conf. on Metallurgical Coatings and Thin Films (ICMCTF), San Diego, CA, April 23, 1991.Google Scholar
11. Saito, Yukio, Sato, Kouji, Tanaka, Hideaki, Fujita, Kazunori, Matuda, Shinpei, J. Mater. Sci. 23, 842 (1988).Google Scholar
12. Saito, Yukio, Sato, Kouji, Gomi, Kenichi, Miyadera, Hiroshi, J. Mater. Sci. 25, 1246 (1990).Google Scholar
13. Rudder, R.A., Hudson, G.C, Hendry, R.C., Thomas, R.E., Posthill, J.B., and Markunas, R.J., “Applications of Diamond Films and Related Materials”, Materials Science Monograph 73, 395 (1991).Google Scholar
14. Rudder, R. A., Hudson, G. C., Posthill, J. B., Thomas, R. E., and Markunas, R. J., Appl. Phys. Lett 59, 791 (1991).Google Scholar
15. Amorim, J., Maciel, H. S., and Sudano, J. P., J. Vac. Sci, Technol. B9, 362 (1991).Google Scholar
16. Rudder, R. A., Hudson, G. C., Posthill, J. B., Thomas, R. E., Hendry, R. C., Malta, D. P., Markunas, R. J., Humphreys, T. P., and Nemanich, R. J., to appear Jan 20, 1992 in Appl. Phys. Lett.Google Scholar