Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T03:48:26.807Z Has data issue: false hasContentIssue false

Chemical Trends in Electronic Properties of Gold-3D Transition Metal Impurity Pairs in Silicon

Published online by Cambridge University Press:  15 February 2011

J. F. Justo
Affiliation:
Department of Nuclear Engineering, MIT, Cambridge, MA 02139
L. V. C. Assali
Affiliation:
Instituto de Física da Universidade de São Paulo, CP 66318, 05315–970, São Paulo, SP, BRAZIL
Get access

Abstract

We report theoretical investigations of the chemical trends in the electronic properties of substitutional gold-interstitial transition-metal complexes in silicon. The results show that the stable pairs in trigonal symmetry are formed by a covalent mechanism which includes, besides Au and TM impurities, also the Si neighbors, rather than being derived from interactions between two electrostatically bound point charges.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ludwig, G. W. and Woodburry, H. H., Solid State Phys. 13, 223 (1962).Google Scholar
[2] Kleinhenz, R. L., Lee, Y. H., Corbett, J. W., Sieverts, E. G., Muller, S. H., and Ammerlaan, C. A. J., Phys. Stat. Sol. (b) 108, 363 (1981).Google Scholar
[3] Sieverts, E. G., Muller, S. H., Ammerlaan, C. A. J., Kleinheiz, R. L., and Corbett, J. W., Phys. Stat. Sol. (b) 109, 83 (1982).Google Scholar
[4] Rodewald, D., Severitt, S., Vollmer, H., and Labusch, R., Solid State Commun. 67, 573 (1988).Google Scholar
[5] Brotherton, S. D., Bradley, P., Gill, A., and Weber, E. R., J. Appl. Phys. 55, 952 (1984).Google Scholar
[6] Lemke, H., Phys. Stat. Sol. (a) 75, 473 (1983).Google Scholar
[7] Czaputa, R., Appl. Phys. A 49, 431 (1989).Google Scholar
[8] Assali, L. V. C., Leite, J. R., and Fazzio, A., Phys. Rev. B 32, 8085 (1985).Google Scholar
[9] Assali, L. V. C. and Leite, J. R., Solid State Commun. 58, 577 (1986).Google Scholar
[10] Fazzio, A., Leite, J. R., and De Siqueira, M. L., J. Phys. C 12, 513 (1979); 14, 3469 (1979).Google Scholar
[11] Koelling, D. D. and Harmon, B., J. Phys. C 10, 3107 (1977).Google Scholar
[12] Wood, J. H. and Boring, A. M., Phys. Rev. B 18, 2701 (1978).Google Scholar
[13] Alves, J. L. A., Leite, J. R., Gomes, V. M. S., and Assali, L. V. C., Solid State Commun. 55, 333 (1985) (and references therein).Google Scholar
[14] Fazzio, A., Caldas, M. J., and Zunger, A., Phys. Rev. B 32, 934 (1985).Google Scholar
[15] Beeler, F., Andersen, O. K., and Scheffler, M., Phys. Rev. Lett. 55, 1498 (1985).Google Scholar
[16] DeLeo, G. G., Watkins, G. D., and Fowler, W. B., Phys. Rev. B 23, 1851 (1981).Google Scholar
[17] Katayama-Yoshida, H. and Zunger, A., Phys. Rev. B 31, 8317 (1985).Google Scholar