Hostname: page-component-76dd75c94c-8c549 Total loading time: 0 Render date: 2024-04-30T08:29:28.706Z Has data issue: false hasContentIssue false

A Chemical Study of Photo-CVD of Silicon Nitride in Mercury-Sensitized Reactions Between Silane and Ammonia

Published online by Cambridge University Press:  26 February 2011

Ching-Hsong Wu*
Affiliation:
Research Staff, Ford Motor Co., P. O. Box 2053, Dearborn, MI 48121
Get access

Abstract

A photochemical system of mercury-sensitized reactions between silane and ammonia was studied to elucidate the gas-phase chemical processes involved in photo-CVD of silicon nitride. Several transient intermediates were detected and identified as silylated amines by the mass spectrometric isotope labeling method. These compounds containing both Si and N atoms appeared to be the precursors of silicon nitride. The chemical characteristics of silylated amines were studied under different experimental conditions. The reactivity and possible reaction paths for the formation of silylamine are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Peters, J. W., U.S. Patent No. 431 587 (1983).Google Scholar
2 Peters, J. W., Gebhart, F. L., Hall, T. C., Int. J. Hybrid Microelectron. 2, 59 (1980); Solid State Technol. 23, 121 (1980).Google Scholar
3 Padmanabhan, R., Miller, B. J., J. Vac. Soc. Technol. A4, 363 (1986).Google Scholar
4 Emeleus, H. J., Stewart, K., Trans. Faraday Soc. 34, 1577 (1936).Google Scholar
5 White, D. G., Rochow, E. G., J. Am. Chem. Soc. 76, 3897 (1954).Google Scholar
6 Niki, H., Mains, G. J., J. Phys. Chem. 68, 304 (1964).Google Scholar
7 Nay, M. A., Woodall, G. N. C., Strausz, O. P., Gunning, H. E., J. Am. Chem. Soc. 87, 179 (1965).Google Scholar
8 Varma, R., Ray, A. K., Sahey, B. K., Inorg. Nucl. Chem. Lett. 5, 497 (1969).Google Scholar
9 Kamaratos, E., Lampe, F. W., J. Phys. Chem. 74, 2267 (1970).Google Scholar
10 Austin, E. H., Lampe, F. W., J. Phys. Chem. 80, 2811 (1976).Google Scholar
11 Dickinson, R., Mitchell, A., Proc. Nati. Acad. Sci. U. S. 12, 692 (1926).Google Scholar
12 Dickinson, R., Mitchell, A., J. Am. Chem. Soc. 49, 1478 (1927).Google Scholar
13 Noyes, W. A. Jr., J. Am. Chem. Soc. 54, 4143 (1932).Google Scholar
14 Gedye, G., Rideal, E., J. Chem. Soc. 135, 1160 (1932).Google Scholar
15 Welge, H., Beekman, A., J. Am. Chem. Soc. 58, 2462 1936).Google Scholar
16 Melville, H. W., Proc. Roy. Soc. (London) A175, 164 (1940).Google Scholar
17 McDonald, C. C., Gunning, H. E., J. Chem. Phys. 23, 532 (1955).Google Scholar
18 Takamuku, S., Back, R. A., Can. J. Chem. 42, 1426 (1964).Google Scholar
19 Hoffman, M., Goldwasser, M., Damour, P., J. Chem. Phys. 47, 2195 (1967).Google Scholar
20 Saitoh, T., Muramatsu, S., Shimada, T., Migitake, M., Appl. Phys. Letters 42, 678 (1983)Google Scholar
21 Potzinger, P., Lampe, F. W., J. Phys. Chem. 73, 3912 (1969).Google Scholar
22 Aylett, B. J., Hakim, M. J., J. Chem. Soc. A, 1969, 639.Google Scholar
23 Raghavachari, K., Chandrasekher, J., Gordon, M. S., Dykema, K. J., J. Am. Chem. Soc. 106, 5853 (1984).Google Scholar
24 Demissy, M., Leselaux, R., Int. J. Chem. Kinet. 14, 1 (1982).Google Scholar
25 Inoue, G., Suzuki, M., Chem. Phys. Lett. 122, 361 (1985).Google Scholar
26 Rochow, E. G., Chemistry of Silicons, 2ed ed. (John Wiley & Sons, New York, 1951), p. 16.Google Scholar